Steps to Simplify One Term in a () to a Power

- 1. Write original problem
- 2. Simplify in the () so that there is only one instance of each variable. If there is a fraction, make sure coefficients are simplified.
- 3. Simplify exponent outside of () as follows:
 - a. Put each coefficient or number and its sign in a ().
 - b. Put each variable and its exponent in a ().
 - c. Put exponent on original () on each of the new ().
- 4. If a number in a () has a negative exponent outside of (), flip up or down in fraction to make exponent positive.
- 5. Go off to side and expand any number in a () with a positive exponent. Put result back in problem.
- 6. For any variable with an exponent in a () to a power outside, multiply exponent inside times power outside to clear ().
- 7. If positive exponents are required, flip base and its exponent up or down in fraction to make exponent positive.

Examples with comments

Problem: 5.6 #97 (Final step should have all exponents positive.)

Simplification	Comments	Side work
$\left(\frac{20t^{19}}{5t^2}\right)^{-4} = (4t^{17})^{-4}$	The expression is not simplified inside of (). We have to simplify the $\frac{20}{5}$ and the $\frac{t^{19}}{t^2}$.	
$= (4)^{-4} (t^{17})^{-4}$	The expression inside of the () is now simplified. Insert a () and its exponent on each number and around each variable and its exponent.	
$=\frac{(t^{17})^{-4}}{(4)^4}$	We cannot expand the (4) ⁻⁴ because it has a negative exponent. We have to flip it down to the denominator so that the exponent becomes positive.	
$=\frac{\left(t^{17}\right)^{-4}}{256}$	The (4) ⁴ now has a positive exponent and it can be expanded on the side.	$(4)^4 = (4)(4)(4)(4)$ $= 16(4)(4)$ $= 64(4)$ $= 256$
$=\frac{t^{-68}}{256}$	Each variable and its exponent inside of a () is simplified by multiplying exponent inside of () by exponent outside of the ().	
$= \frac{1}{256t^{68}}$	The final step needs to have positive exponents. The t^{-68} is flipped to go down to the denominator so that it can have a positive exponent	

Problem: 5.7 #32

Simplification	Comments	Side work
	The expression is simplified inside of	
$(4r)^2 = (4)^2(r)^2$	(), so now insert a () and its exponent	
(47) - (4)(7)	on each number and around each variable	
	and its exponent.	
$-16(r)^2$	We expand the $(4)^2$ on the side since the	$(4)^2 = (4)(4)$
$= 16(r)^2$	exponent is positive.	= 16
	The $(r)^2$ is simplified by multiplying the	
$= 16r^2$	exponent of the r , which is understood to	
	be a one, times the exponent of 2 outside	
	the ().	

Problem: 5.7 #35

Simplification	Comments	Side work
$(-2x^5)^3 = (-2)^3(x^5)^3$	The expression is simplified inside of (), so now insert a () and its exponent on each number and around each variable and its exponent.	
$= -8(x^5)^3$	We expand the $(-2)^3$ on the side since the exponent is positive.	$(-2)^3 = (-2)(-2)(-2)$ $= 4(-2)$ $= -8$
$=-8x^{15}$	The $(x^5)^3$ is simplified by multiplying the exponent on the x, which is 5, times the exponent outside the () of 3.	

Problem: 5.7 #87

Simplification	Comments	Side work
$\left(\frac{-3}{8x^8}\right)^2 = \frac{(-3)^2}{(8)^2(x^8)^2}$	The expression is simplified inside of (), so now insert a () and its exponent on each number and around each variable and its exponent.	
$= \frac{9}{64(x^8)^2}$	We expand the $(-3)^2$ on the side since the exponent is positive and we can do the same for $(8)^2$	$(-3)^{2} = (-3)(-3)$ $= 9$ $(8)^{2} = (8)(8)$ $= 64$
$=\frac{9}{64x^{16}}$	The $(x^8)^2$ is simplified by multiplying the exponent on the x, which is 8, times the exponent outside the () of 2.	

Problem: 5.7 #92

Simplification	Comments	Side work
$\left(\frac{x^9}{2y^8z^5}\right)^2 = \frac{(x^9)^2}{(2)^2(y^8)^2(z^5)^2}$	The expression is simplified inside of (), so now insert a () and its exponent on each number and around each variable and its exponent.	
$=\frac{\left(x^9\right)^2}{4(y^8)^2(z^5)^2}$	We expand the $(2)^2$ on the side since the exponent is positive.	$(2)^2 = (2)(2)$ = 4
$=\frac{x^{18}}{4y^{16}z^{10}}$	Each variable and its exponent inside of a () is simplified by multiplying exponent inside of () by exponent outside of the ().	

Problem: 5.7 #107

Simplification	Comments	Side work
$(-5y^{-13})^{-3} = (-5)^{-3}(y^{-13})^{-3}$	The expression is simplified inside of (). Insert a () and its exponent on each number and around each variable and its exponent.	
$=\frac{(y^{-13})^{-3}}{(-5)^3}$	We cannot expand the $(-5)^{-3}$ because it has a negative exponent. We have to flip it down to the denominator so that the exponent becomes positive.	
$=\frac{\left(y^{-13}\right)^{-3}}{-125}$	The $(-5)^3$ now has a positive exponent and it can be expanded on the side.	$(-5)^3 = (-5)(-5)(-5)$ $= 25(-5)$ $= -125$
$=\frac{y^{39}}{-125}$	Each variable and its exponent inside of a () is simplified by multiplying exponent inside of () by exponent outside of the ().	
$=-\frac{y^{39}}{125}$	We now have a positive divided by a negative and that will make the answer negative.	