Perfect Squares and Non-Perfect Squares

A perfect square has a square root equal to a whole number, such as, $\sqrt{25} = 5$. The number 26 is not a perfect square because $\sqrt{26} \approx 2.24$. The following table shows perfect squares and square roots.

Squares of Whole Numbers	Results of Squares. Known as Perfect Squares	Square Roots of Perfect Squares	Results of Square Roots
0^{2}	0	$\sqrt{0}$	0
1^{2}	1	$\sqrt{1}$	1
2^{2}	4	$\sqrt{4}$	2
3^{2}	9	$\sqrt{9}$	3
4^{2}	16	$\sqrt{16}$	4
5^{2}	25	$\sqrt{25}$	5
6^{2}	36	$\sqrt{36}$	6
7^{2}	49	$\sqrt{49}$	7
8 ²	64	$\sqrt{64}$	8
9^{2}	81	$\sqrt{81}$	9
10^{2}	100	$\sqrt{100}$	10
11^{2}	121	$\sqrt{121}$	11
12^{2}	144	$\sqrt{144}$	12
13^{2}	169	$\sqrt{169}$	13
14^{2}	196	$\sqrt{196}$	14
15^{2}	225	$\sqrt{225}$	15

Steps to Simplify Square Root of a Non-Perfect Square

- 1. Write out problem.
- Factor number under the √ to have two factors, the largest perfect square and one other factor.
 Make sure you find the largest perfect square factor. Example √32 is not a perfect square but can be written as √16 · 2. Notice we did not pick 4 times 8 because 16 is the largest perfect square factor of 32.
- 3. Put a $\sqrt{}$ over 1st factor and a $\sqrt{}$ over 2nd factor.
- 4. Simplify first $\sqrt{}$ and put result in front of other $\sqrt{}$ that is not a perfect square.

Examples:

$$\sqrt{32} = \sqrt{16 \cdot 2}$$

$$= \sqrt{16}\sqrt{2}$$

$$= 4\sqrt{2}$$

$$\sqrt{94} = \sqrt{49 \cdot 2}$$

$$= \sqrt{49}\sqrt{2}$$

$$= 7\sqrt{2}$$

$$\sqrt{500} = \sqrt{100 \cdot 5}$$

$$= \sqrt{100}\sqrt{5}$$

$$= 10\sqrt{5}$$