Steps to Solve a Quadratic Equation Containing a Complex Solution

- 1. W.O.P
- 2. The square root of a negative number should be replaced by i and the square root of a positive number. For example, $\sqrt{-23}$ becomes $i\sqrt{23}$.
- 3. Continue to simplify square root and fraction from previous steps.
- 4. Final simplification should have a number \pm and a number with i or just \pm and a number with i, such as,

 $x = 3 \pm 7i$ or something like $x = \pm i\sqrt{11}$.

Example: Solve $7x^2 - 2x + 4 = 0$.

(See Next Page)

Solution	Notes:
$7x^2 - 2x + 4 = 0$	Write the original problem
Evaluate $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ for $a = 7, b = -2, c = 4$	Set up quadratic formula.
$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(7)(4)}}{2(7)}$	Substitute values.
$x = \frac{2 \pm \sqrt{4 - 28(4)}}{14}$	Simplify under $$ and simplify the fraction.
$x = \frac{2 \pm \sqrt{4 - 112}}{14}$	
$x = \frac{2 \pm \sqrt{-108}}{14}$	There is a square root of a negative number so change to an expression containing i .
$x = \frac{2 \pm i\sqrt{108}}{14}$	
$x = \frac{2 \pm i\sqrt{(36)(3)}}{14}$	Finish simplification of square root.
$x = \frac{2 \pm i\sqrt{36}\sqrt{3}}{14}$	
$x = \frac{2 \pm i(6)\sqrt{3}}{14}$	
$x = \frac{2 \pm 6i\sqrt{3}}{14}$	We notice all the numbers outside of $\int_{-\infty}^{\infty} 1 dx = \int_{-\infty}^{\infty} 1 dx$
$x = \frac{2}{14} \pm \frac{-6i\sqrt{3}}{14}$	the $$ have a common factor of two so we split up fraction to do more simplification and then put fraction
$x = \frac{(\mathcal{Z})(1)}{(\mathcal{Z})(7)} \pm \frac{(\mathcal{Z})(3)i\sqrt{3}}{(\mathcal{Z})(7)}$	back together.
$x = \frac{1}{7} \pm \frac{3i\sqrt{3}}{7}$	
$x = \frac{1 \pm 3i\sqrt{3}}{7}$	
$x = \frac{1}{7} \pm \frac{3i\sqrt{3}}{7}$	We split off the real part and the imaginary part.
$x = \frac{1}{7} \pm \frac{3}{7}i\sqrt{3}$	Final simplification should have a number \pm a number with i .

The solution set is $\left\{\frac{1}{7} \pm \frac{3}{7}i\sqrt{3}\right\}$. The solution set can also be written as $\left\{\frac{1}{7} + \frac{3}{7}i\sqrt{3}, \frac{1}{7} - \frac{3}{7}i\sqrt{3}\right\}$.