Steps to Convert a Quadratic Function in Standard Form to Vertex Form by Completing the Square

1. Write original problem.
2. Put terms in order so that the function looks like:

$$
f(x)=a x^{2}+b x+c
$$

3. Always factor out the value of a. Note: Fractions may be used.
4. On side of problem compute the value of a new term. The term is the square of one-half of the coefficient of the x term.
5. Insert this new term and its opposite right after the x term.
6. Apply the distributive property and regroup the three terms in the () and put the last two terms in another (). Put a is in front of both pairs of parenthesis.
7. Factor the terms in $1^{\text {st }}$ () by using the perfect square trinomial method. Simplify inside 2nd () and simplify multiplication of a times the $2^{\text {nd }}$ ().
8. Rewrite the factors of the trinomial as a ()2 so that the final form looks like:

$$
f(x)=a(x-h)^{2}+k, \text { with a vertex of }(h, k)
$$

Example: Convert $f(x)=3 x^{2}+2 x+5$ to Vertex Form.
$f(x)=3 x^{2}+2 x+5$
$f(x)=3\left(x^{2}+\frac{2}{3} x+\frac{5}{3}\right)$

$f(x)=3\left(x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9}+\frac{5}{3}\right)$
$f(x)=3\left(x^{2}+\frac{2}{3} x+\frac{1}{9}\right)+3\left(-\frac{1}{9}+\frac{5}{3}\right)$
$f(x)=3\left(x+\frac{1}{3}\right)\left(x+\frac{1}{3}\right)+3\left(-\frac{1}{9}+\frac{5(3)}{3(3)}\right)$
$f(x)=3\left(x+\frac{1}{3}\right)^{2}+3\left(-\frac{1}{9}+\frac{15}{9}\right)$
Insert this new term and its opposite back in problem.
$f(x)=3\left(x+\frac{1}{3}\right)^{2}+3\left(\frac{14}{9}\right)$
$f(x)=3\left(x+\frac{1}{3}\right)^{2}+\frac{\not \partial}{1}\left(\frac{14}{(\not \partial)(3)}\right)$
$f(x)=3\left(x+\frac{1}{3}\right)^{2}+\frac{14}{3}$
Vertex will be $\left(-\frac{1}{3}, \frac{14}{3}\right)$.

