Steps to do Long Division of Polynomials

- 1. Write out original problem.
- 2. Set up problem in long division format and make sure that that **all terms** are listed from the highest exponent down to a constant. Add terms if necessary and put each polynomial in standard form. For example, if the original dividend is:

 $2 + 4x^3 + 3x$

The polynomial is not in standard form and is also missing the x^2 term. The polynomial has to be written as:

 $4x^3 + 0x^2 + 3x + 2$

- 3. Divide the first term in the divisor into the first term of the dividend and put the result up in the quotient area.
- 4. Multiply the term, you just put up in the divisor area, times each term in the divisor and put the result below the dividend.
- 5. Subtract the polynomial, you just placed by using the following process:
 - a. Put the opposite sign over each sign and use a different color.
 - b. Combine the terms in each column and you will now have a new dividend.
- 6. Bring down the rest of the old dividend.
- 7. Repeat steps 3 6 until the new dividend has a degree less than the divisor.
- 8. If there is a remainder, the final answer is the polynomial you have in the quotient area plus the remainder over the divisor.

Note: The process of long division follows the acronym of **D**, **M**, **S**, **B**, that is, divide, multiply, subtract and bring down. The letters **D**, **M**, **S**, **B**, can be remembered by thinking of a family, \underline{D} for Dad, \underline{M} for Mom, \underline{S} for Sister and \underline{B} for Brother.

Example with notes.	
$\left(2+4x^3+3x\right)\div\left(x-3\right)$	Original problem
$\begin{array}{c} Quotient Area\\ x-3 \overline{\smash{\big)}4x^3+0x^2+3x+2}\\ \uparrow & \swarrow \\ Divisor & Dividend \end{array}$	Set up division problem in long division format. The dividend needs add an x^2 term and it needs to be put in standard form from highest to lowest degree.
$\frac{4x^2}{x-3} \leftarrow \frac{4x^3}{4x^3+0x^2+3x+2}$	Divide first term of divisor, x , into first term of dividend, $4x^3$, put result in quotient area.
$ \frac{4x^{2}}{x-3)4x^{3}+0x^{2}+3x+2} \\ 4x^{3}-12x^{2} \leftarrow $	Multiply the term you just put in the quotient area, $4x^2$ times the divisor and put result below dividend.
$ \frac{4x^{2}}{x-3)4x^{3}+0x^{2}+3x+2} - \frac{4x^{3}+0x^{2}+3x+2}{4x^{3}+12x^{2}} $	Subtract this new polynomial by first changing signs. See red color for signs.
$\frac{4x^{2}}{x-3)4x^{3}+0x^{2}+3x+2}$ $\frac{-4x^{3}-12x^{2}}{12x^{2}} \leftarrow$	Secondly, finish the subtraction by combining terms in each column.
$ \begin{array}{r} \frac{4x^2}{x-3} + 0x^2 + 3x + 2 \\ \frac{4x^3 + 0x^2 + 3x + 2}{12x^2 + 3x + 2} \\ \end{array} $	Bring down the rest of the dividend and now you will be dividing with a new dividend of: $12x^2 + 3x + 2$
$ \frac{4x^{2} + 12x \leftarrow}{x - 3)4x^{3} + 0x^{2} + 3x + 2} \\ \frac{4x^{3} + 0x^{2} + 3x + 2}{12x^{2} + 3x + 2} $	Divide first term of divisor, x , into first term of new dividend, $12x^2$. Put the result, $12x$, in the quotient area.

Long Division of Polynomials

$\frac{4x^2 + 12x}{x - 3 4x^3 + 0x^2 + 3x + 2}$	Multiply the term which was just put in the quotient area, $12x$, times the divisor and put the result below the dividend.
$\frac{4x^{3} - 12x^{2}}{12x^{2} + 3x + 2}$ $12x^{2} - 36x \leftarrow$	
$\frac{4x^2 + 12x}{x - 3)4x^3 + 0x^2 + 3x + 2}$	Subtract this new polynomial by changing signs and combining terms in each column.
$\frac{4x^{3} + 12x^{2}}{12x^{2} + 3x + 2}$	
$\frac{12x^2 + 36x}{39x} \leftarrow$	
$\frac{4x^{2} + 12x}{x - 3 \sqrt{4x^{3} + 0x^{2} + 3x + 2}}$	Bring down the rest of the last divided and now you will have a new dividend.
$ \frac{4x^{3} + 12x^{2}}{12x^{2} + 3x + 2} = \frac{12x^{2} + 3x + 2}{12x^{2} + 36x} \downarrow $	
39x + 2	
$x-3)4x^3 + 0x^2 + 3x + 2$	Divide first term of divisor, x , into first term of new dividend, $39x$.
$\frac{12x^{2}}{12x^{2} + 3x + 2}$	
+39x + 2	
$\frac{4x^{3} + 12x^{2}}{12x^{2} + 3x + 2}$ $\frac{-12x^{2} + 3x + 2}{12x^{2} - 36x}$	

Long Division of Polynomials

$4x^2 + 12x + 39x$	Multiply the term you just inserted in the
$(x-3)\overline{4x^3+0x^2+3x+2}$	quotient area, $39x$, time the divisor and put result below your new dividend.
$-4x^{3} + 12x^{2}$	
$12x^2 + 3x + 2$	
$\frac{12x^2 + 36x}{12x^2 + 36x}$	
39x + 2	
$39x - 117 \leftarrow$	
$4x^2 + 12x + 39x$	
$\frac{11x^{2} + 12x^{2} + 35x}{x^{2} + 3x^{2} + 3x + 2}$	Subtract this new polynomial by changing signs and combining terms in each column.
$-4x^{3} + 12x^{2}$	You should see that the new dividend is just
$12x^2 + 3x + 2$	119 and there is no other terms to bring down in the old dividend.
$-12x^2 + 36x$	
39x + 2	You should also see that the new dividend has a degree less than the divisor. The divisor has a
$\frac{39x + 117}{39x - 117}$	degree of one and the new dividend has a degree of zero .
119 ←	
$(2+4x^3+3x) \div (x-3) = 4x^2 + 12x + 39x + \frac{119}{x-3}$	The division process is now finished, so write the polynomial in the quotient area along with the remainder over the divisor.