## Mixtures [See 5.2: 68-69, 75-77 and 5.3: 42, 43]

These problems involve mixing two solutions or two other entities to form a final mixture. The solutions being mixed have different concentrations of a particular compound. A common solution that we can buy is rubbing alcohol which usually has $70 \%$ alcohol. The other $30 \%$ is usually distilled water. Another example could be salad dressing that usually has around $75 \%$ olive oil and the other main compound is vinegar.

You are given the percent concentrate of each solution and the amount of the final mixture along with its percent concentrate. You are looking for the amount of each solution being mixed. Here is the setup:

Let $\boldsymbol{x}=$ number of liters at some percent.
Let $\boldsymbol{y}=$ number of liters at another percent.

| Description | No. of liters etc. | Percent of alcohol, etc. | No. of liters, etc., of alcohol, etc. |
| :---: | :---: | :---: | :---: |
| $1{ }^{\text {st }}$ Solution | $x$ | $\begin{gathered} \text { <some percent> } \\ =.[\text { some decimal }] \end{gathered}$ | .[some decimal] $\boldsymbol{x}$ |
| $2^{\text {nd }}$ Solution | $y$ | <another percent> <br> $=$. [another decimal] | .[another decimally |
| Final Solution | <final amount> | <final percent> <br> $=$.[final decimal] | .[final decimal](final%20amount) |

## Example: 5.2:43

You poured some $8 \%$ alcohol solution and some $12 \%$ alcohol solution into a mixing container. Now you have 680 grams of $10 \%$ alcohol solution. Write and solve a system of equations to find how many grams of $8 \%$ solution and how many grams of $12 \%$ solution you poured into the mixing container.

Let $\boldsymbol{x}=$ number of grams of $8 \%$ alcohol solution.
Let $\boldsymbol{y}=$ number of grams of $12 \%$ alcohol solution.

| Description | No. of grams | Percent of alcohol.. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | No. of grams of alcohol |  |
| $1^{\text {st }}$ Solution | $\boldsymbol{x}$ | $8 \%=.08$ |  |  |
| $2^{\text {ndd }}$ Solution | $\boldsymbol{y}$ | $12 \%=.12$ | $.12 \boldsymbol{y}$ |  |
| Final Solution | 688 | $10 \%=.10$ | $.10(688)$ |  |

$\left\{\begin{array}{l}x+y=688 \\ .08 x+.12 y=.10(688)\end{array}\right.$

