Methods to solve a quadratic equation:

1. Factoring Method
2. Square Root Method
3. Quadratic Formula Method

The general form of a quadratic equation is:
$a x^{2}+b x+c=0$, where a, b, and c are real numbers and $a \neq 0$.
The second method, the Square Root Method, can be used on quadratic equations in one of two forms:

1. $a x^{2}=c$
2. $(p x+h)^{2}=k$

Steps to Solve a Quadratic Equation, in the form of $a x^{2}=k$, Using the Square Root Method

1. Write out the original problem.
2. Simplify each side of the equation and use the properties of equality to have the x^{2} term on the left side and the constant on the right side.
3. Divide each side by the coefficient of the \mathbf{x}^{2} term so that the problem looks like, $\mathbf{x}^{2}=25$.
4. Take the square root of each side and on the right side make sure you add \pm in front of the radical.
5. Simplify the square root on the right side and retain the \pm. On the left side, you should end up with x.
6. If the square root term contains a perfect square, simplify and break up problem into:

$$
\boldsymbol{x}=+ \text { value or } \boldsymbol{x}=- \text { value }
$$

7. Check both answers.
8. If the square root remains in the problem, just leave it as:

$$
x= \pm \sqrt{ }
$$

Example: Solve $3 x^{2}=75$ using the square root method.

Steps to Solve

$$
\begin{aligned}
& 3 x^{2}=75 \\
& \frac{3 x^{2}}{3}=\frac{75}{3} \\
& x^{2}=25 \\
& \sqrt{x^{2}}= \pm \sqrt{25} \\
& x= \pm 5 \\
& x=5 \text { or } x=-5
\end{aligned}
$$

Steps to Check

$$
\text { Check } 3 x^{2}=75 \text { for } x=5, x=-5
$$

$$
\begin{array}{ll}
3(5)^{2} \stackrel{?}{=} 75 & 3(-5)^{2} \stackrel{?}{=} 75 \\
3(25) \stackrel{?}{=} 75 & 3(25) \stackrel{?}{=} 75 \\
75=75 \text { true } & 75=75 \text { true }
\end{array}
$$

The solution set is $\{ \pm 5\}$.

Steps to Solve a Quadratic Equation, in the form of $(p x+h)^{2}=k$, Using the Square Root Method

1. Write out the original problem.
2. Isolate the $(p x+h)^{2}$ expression on left side equal to one constant on right side.
3. Take the square root of each side and on the right side make sure you add \pm in front of the radical.
4. Simplify the square root on the right side and retain the \pm.
5. Isolate the \boldsymbol{x} variable on the left by adding or subtracting the constant on both sides and on the right side place the constant before the \pm.
6. If the square root can be simplified to a number, split answer in two parts.
7. If the problem has a square root, such as, $x=8 \pm \sqrt{5}$, keep the problem with the square root. If the answer is a fraction containing a square root, simplify if possible by factoring.

Example: Solve: $(x+2)^{2}=12$
$(x+2)^{2}=12$
$\sqrt{(x+2)^{2}}= \pm \sqrt{12}$
$x+2= \pm \sqrt{(4)(3)}$
$x+2= \pm \sqrt{(4)} \sqrt{(3)}$
$x+2= \pm 2 \sqrt{3}$
$x+2-2=-2 \pm 2 \sqrt{3}$
$x=-2 \pm 2 \sqrt{3}$
The solution set is $\{-2 \pm 2 \sqrt{3}\}$.

