Methods to solve a quadratic equation:

- 1. Factoring Method
- 2. Square Root Method
- 3. Quadratic Formula Method

The general form of a quadratic equation is:

 $ax^{2} + bx + c = 0$, where a, b, and c are real numbers and $a \neq 0$.

The second method, the Square Root Method, can be used on quadratic equations in one of two forms:

1.
$$ax^2 = c$$

2. $(px + h)^2 = k$

Steps to Solve a Quadratic Equation, in the form of $ax^2 = k$, Using the Square Root Method

1. Write out the original problem.

- 2. Simplify each side of the equation and use the properties of equality to have the x^2 term on the left side and the constant on the right side.
- 3. Divide each side by the coefficient of the x^2 term so that the problem looks like, $x^2 = 25$.
- 4. Take the square root of each side and on the right side make sure you add \pm in front of the radical.
- 5. Simplify the square root on the right side and retain the \pm . On the left side, you should end up with x.
- 6. If the square root term contains a perfect square, simplify and break up problem into:

x = + value or x = - value

- 7. Check both answers.
- 8. If the square root remains in the problem, just leave it as:

$$x = \pm \sqrt{}$$

Example: Solve $3x^2 = 75$ using the square root method.

Steps to Solve

Steps to Check

$$3x^{2} = 75$$

$$3x^{2} = 75$$

$$\frac{3x^{2}}{3} = \frac{75}{3}$$

$$x^{2} = 25$$

$$\sqrt{x^{2}} = \pm \sqrt{25}$$

$$x = 5 \text{ or } x = -5$$
Check $3x^{2} = 75 \text{ for } x = 5$, $x = -5$

$$3(5)^{2} \stackrel{?}{=} 75$$

$$3(25) \stackrel{?}{=} 75$$

$$3(25) \stackrel{?}{=} 75$$

$$75 = 75 \text{ true}$$

$$75 = 75 \text{ true}$$

The solution set is $\{\pm 5\}$.

Steps to Solve a Quadratic Equation, in the form of $(px + h)^2 = k$, Using the Square Root Method

- 1. Write out the original problem.
- 2. Isolate the $(px + h)^2$ expression on left side equal to one constant on right side.
- 3. Take the square root of each side and on the right side make sure you add \pm in front of the radical.
- 4. Simplify the square root on the right side and retain the \pm .
- 5. Isolate the *x* variable on the left by adding or subtracting the constant on both sides and on the right side place the constant before the \pm .
- 6. If the square root can be simplified to a number, split answer in two parts.
- 7. If the problem has a square root, such as, $x = 8 \pm \sqrt{5}$, keep the problem with the square root. If the answer is a fraction containing a square root, simplify if possible by factoring.

Example: Solve: $(x + 2)^2 = 12$

$$(x + 2)^{2} = 12$$

$$\sqrt{(x + 2)^{2}} = \pm \sqrt{12}$$

$$x + 2 = \pm \sqrt{(4)(3)}$$

$$x + 2 = \pm \sqrt{(4)}\sqrt{(3)}$$

$$x + 2 = \pm 2\sqrt{3}$$

$$x + 2 - 2 = -2 \pm 2\sqrt{3}$$

$$x = -2 \pm 2\sqrt{3}$$

The solution set is $\left\{-2 \pm 2\sqrt{3}\right\}$.