Put the following notes in your notebook:
Methods to solve a quadratic equation:

1. Factoring
2. Square Root Property
3. Quadratic Formula
[Limited because it can only be used on polynomials that can be factored.]
[Limited to only equations in the form of $\boldsymbol{a \boldsymbol { x } ^ { 2 }}=\boldsymbol{c}$ or $(\boldsymbol{p x}+\boldsymbol{h})^{2}=\boldsymbol{k}$]
[Can be used to solve any quadratic equation.]

Steps to Solve a Quadratic Equation using the Quadratic Formula Method

1. Write out original problem.
2. Set up equation in general form of:
$a x^{2}+b x+c=0$. Use zeros as placeholders if needed so that there are always three terms on the left side.
3. Write down the quadratic formula and the constants to be substituted:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} ; a=$ \qquad , $b=$ \qquad , $c=$ \qquad
4. Substitute using () for the variables $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}.
5. Simplify fraction and the square root term.
6. Once the fraction is simplified and a $\sqrt{ }$ remains in the fraction, see if you can factor and cancel.
7. If there is a perfect square and the $\sqrt{\text { does not remain in the fraction, split up fraction into two fractions by splitting }}$ at the \pm sign and then simplify each fraction.

Example 1: Solve $3 x^{2}+2 x-6=0$, using the quadratic formula.
$3 x^{2}+2 x-6=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} ; a=3, b=2, c=-6$
$x=\frac{-(2) \pm \sqrt{(2)^{2}-4(3)(-6)}}{2(3)}$
$x=\frac{-2 \pm \sqrt{4+72}}{6}$
$x=\frac{-2 \pm \sqrt{76}}{6}$
$x=\frac{-2 \pm \sqrt{4} \sqrt{19}}{6}$
$x=\frac{-2 \pm 2 \sqrt{19}}{6}$
$x=\frac{(\not 2)(-1 \pm 1 \sqrt{19})}{(\not 2)(3)} \longleftarrow\left\{\begin{array}{l}\text { as: } \\ -2+2 \mathrm{x}\end{array}\right.$
$x=\frac{-1 \pm \sqrt{19}}{3}$
Note: We do
similar factoring to
GCF method in numerator. You can view the numerator as:

And we would factor as:
$2(-1+x)$

The solution set is $\left\{\frac{-1 \pm \sqrt{19}}{3}\right\}$.

Example 2: Solve $3 x^{2}+10 x=8$, using the quadratic formula.
Steps for Solving
$3 x^{2}-10 x=8$
$3 x^{2}-10 x-8=8-8$
$3 x^{2}-10 x-8=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} ; a=3, b=-10, c=-8$
$x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(3)(-8)}}{2(3)}$
$x=\frac{10 \pm \sqrt{100-12(-8)}}{6}$
$x=\frac{10 \pm \sqrt{100+96}}{6}$
$x=\frac{10 \pm \sqrt{196}}{6}$
$x=\frac{10 \pm 14}{6}$
$x=\frac{10+14}{6}$ or $x=\frac{10-14}{6}$
$x=\frac{24}{6}$ or $x=\frac{-4}{6}$
$x=4$ or $x=-\frac{4}{6}$
$x=4$ or $x=-\frac{2}{3}$
x

Notes

Equation is not in standard form of $a x^{2}+b x+c=0$, so it has to be modified.

There is a perfect square so the square root can be simplified. The fraction can be split into two fractions.

The solution set is $\left\{4, \frac{2}{3}\right\}$.

