Please read 6.3 and 6.4 and write the following notes in your notebook. Please write the following words and definitions in your notebook from 6.3.

Polynomial
Standard Form
Degree of a Polynomial
Trinomial

• Degree

Steps to Add or Subtract Polynomials in ()

- 1. Write out the original problem. (W.O.P.)
- 2. Multiply the sign in front of each () times all terms inside of () to clear ().
- 3. Put like terms together in descending degree order.
- 4. Combine coefficients of like terms.

Example $(8x^2 - 11x + 2) - (4x^2 - 3x + 10)$

In this problem we are subtracting terms in one () from another. The 1^{st} () has no sign in front so it is seen as a plus and the second () has a minus. You can think of it as multiplying a+1 times a () or a-1 times a ().

Problem	Notes
$(8x^2 - 11x + 2) - (4x^2 - 3x + 10)$	Original Problem
$= 8x^2 - 11x + 2 - 4x^2 + 3x - 10$	Multiply sign in front times each term inside to clear ().
$= 8x^2 - 4x^2 - 11x + 3x + 2 - 10$	Move like terms together.
$=4x^2-8x-8$	Combine coefficients of like terms.

Steps to Multiply Polynomials

- 1. W.O.P.
- 2. If a () is raised to a power and if the () has multiple terms, expand the () by explicitly writing the () times itself as many times as the exponent.
- 3. Take each term in the first () and multiply it times each term in the next ().
- 4. Make sure you watch the sign in front of each term that is being multiplied.
- 5. The actual multiplication is accomplished by doing the following:
 - a. Multiply the coefficients together and their signs.
 - b. Multiply the same variables together by adding their exponents and putting the result on the variable.
 - c. Multiply unlike variables together by putting the variables together in alphabetical order and leave exponents alone.
- 6. Put like terms together in descending degree order.
- 7. Combine coefficients of like terms.

Note: Examples to multiply on next page.

Example 1: $3x(7x^3 - 2x^2 + 5x - 20)$

In this problem we will be multiplying the 3x times all of the terms inside of the (). There will be four multiplications.

$$3x(7x^3 - 2x^2 + 5x - 20)$$

$$= 3x(7x^3) + 3x(-2x^2) + 3x(5x) + 3x(-20)$$

$$= 21x^4 - 6x^3 + 15x^2 - 60x$$

NOTE: It is optional to show the actual distribution, you can go directly to the step with:

$$21x^4 - 6x^3 + 15x^2 - 60x$$

Example 2: $(x + 2)(x^3 + 4x^2 - 3x + 10)$

In this problem we have two terms by four terms so there will be a total of eight multiplications. In the first () we will multiply the 1^{st} term "x" time each term in the second (). We will then multiply the term "2" times each term in the second ().

$$(x + 2)(x3 + 4x2 - 3x + 10)$$

= $x4 + 4x3 - 3x2 + 10x + 2x3 + 8x2 - 6x + 20$

Now, move like terms together:

$$= x^4 + 4x^3 + 2x^3 - 3x^2 + 8x^2 + 10x - 6x + 20$$

Finally, combine coefficients of like terms.

$$= x^4 + 6x^3 + 5x^2 + 4x + 20$$

Example 3: (x + 5y)(7x + 3y)

In this problem we will multiply two terms by two terms for a total of four multiplications. Some of the multiplications have unlike variables and the resulting product will just have the variables by each other.

$$(x + 5y)(7x + 3y)$$

= $7x^2 + 3xy + 35xy + 15y^2$
= $7x^2 + 38xy + 15y^2$

Example 4: $(x + 6y)^2$

In this problem we need to expand the () because of the power of 2.

$$(x + 6y)^{2}$$
= (x + 6y)(x + 6y)
= x² + 6xy + 6xy + 36y²
= x² + 12xy + 36y²