Mathematical Formulas

Simple Interest $\quad I=P r t \quad A=P+P r t$

Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad \text { or } \quad P=\frac{A}{\left(1+\frac{r}{n}\right)^{n t}}
$$

Continuously Compounded
$\left.\begin{array}{lll}A=P e^{r t} & \text { or } & P=\frac{A}{e^{r t}} \\ \text { Savings Plans } & A=\frac{d\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\left(\frac{r}{n}\right)} & \text { or }\end{array} d=\frac{A\left(\frac{r}{n}\right)}{\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}\right) \quad$ or $\quad d=\frac{d\left(1-\left(1+\frac{r}{n}\right)^{-n t}\right)}{\left(1-\left(1+\frac{r}{n}\right)^{-n t}\right)}$
P is the principal, starting amount, or present value
d is your loan payment (your monthly payment, annual payment, etc.)
r is the annual interest rate in decimal form
$n \quad$ is the number of compounding periods in one year
t is the length of the loan, in years
A is the end amount or future value
If the compounding frequency is not always explicitly given, it is determined by how often you make payments

```
Spreadsheet Formulas
    =principal+principal*rate*time
    =FV(rate per period, number of periods, payment amount, present value)
    =principal*EXP(yearly rate*years)
    =PV(rate per period, number of periods, payment amount, future value)
    =PMT(rate per period, number of periods, present value, future value)
    =EFFECT(stated rate, number of compounding periods per year)
rate per period is the interest rate per compounding period, r/n
number of periods is the total number of periods, n*t
payment amount is the amount of regular payments, }
present value is the amount deposited or principal, P
future value is the amount you want in the future, O for a loan
```

