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1. Determine whether the following series converges or diverges. If it converges, find its sum.

9

10
+

9

100
+

9

1000
+ · · ·

Solution: We can rewrite our series in sigma notation as

∞∑︂
n=1

9

10n
=

9

10
+

9

100
+

9

1000
+ · · ·

We can manipulate our series now as

∞∑︂
n=1

9

10n
= 9

∞∑︂
n=1

1

10n
= 9

∞∑︂
n=1

(︃
1

10

)︃n

The series
∞∑︂

n=1

(︃
1

10

)︃n

is a geometric series with r = 1
10 ∈ (−1, 1), so it is convergent. Moreover,

∞∑︂
n=1

(︃
1

10

)︃n

=
a

1− r

=
1
10

1− 1
10

=
1

9

It follows that
∞∑︂

n=1

9

10n
= 9

(︃
1

9

)︃
= 1.



2. Determine whether the following series converges or diverges. If it converges, find its sum. Justify your
conclusion as specifically as possible.

686 + 588 + 504 + 432 + · · ·

Solution: Notice that each term of the series is obtained from the previous term by multiplying by
r = 6

7 . Thus, our series is a convergent geometric series with r ∈ (−1, 1). It follows that our series
converges to a

1− r
=

686

1− 6
7

= 4802.

3. Determine whether the following series converges or diverges. If it converges, find its sum. Justify your
conclusion as specifically as possible.

432 + 504 + 588 + 686 + · · ·

Solution: Notice that each term of the series is obtained from the previous term by multiplying by
r = 7

6 . Thus, our series is a divergent geometric series with r /∈ (−1, 1).

4. Determine whether the following series converges or diverges. If it converges, find its sum. Justify your
conclusion as specifically as possible. Hint: Consider a partial fraction decomposition.

∞∑︂
n=0

2

(n + 1)(n + 2)

Solution: Let’s find the partial fraction decomposition of
2

(n + 1)(n + 2) . It turns out,

2

(n + 1)(n + 2) =
2

n + 1 − 2

n + 2

Then the nth partial sum of
∞∑︂

n=0

2

(n + 1)(n + 2) =

∞∑︂
n=0

(︃
2

n + 1 − 2

n + 2

)︃
is

sn =
2

1
− 2

2
+

2

2
− 2

3
+

2

3
− 2

4
+ · · · + 2

n + 1 − 2

n + 2

= 2− 2

n + 2

Since lim
n→∞

sn = 2, it follows that
∞∑︂

n=0

2

(n + 1)(n + 2) converges to 2.



5. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=4

7

n
6
7

Solution: Note that
∞∑︂

n=4

7

n
6
7

= 7
∞∑︂

n=4

1

n
6
7

. Since
∞∑︂

n=4

1

n
6
7

is a p-series with p = 6
7 <= 1, so

∞∑︂
n=4

1

n
6
7

diverges. Therefore,
∞∑︂

n=4

7

n
6
7

diverges.

6. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=4

e

nπ

Solution: Note that
∞∑︂

n=4

e

nπ
= e

∞∑︂
n=4

1

nπ
. Since

∞∑︂
n=4

1

nπ
converges as a p-series with p = π > 1, the

original series
∞∑︂

n=4

e

nπ
converges.

7. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=1

(n + 1)(2n + 1)(3n + 1)
n3 + n2 + n + 1

Solution: Expanding the summand, we get

(n + 1)(2n + 1)(3n + 1)
n3 + n2 + n + 1 =

6n3 + 11n2 + 6n + 1
n3 + n2 + n + 1 .

Consider

lim
n→∞

(n + 1)(2n + 1)(3n + 1)
n3 + n2 + n + 1 = lim

n→∞

6n3 + 11n2 + 6n + 1
n3 + n2 + n + 1

= 6

By the Divergence Test, the series
∞∑︂

n=1

(n + 1)(2n + 1)(3n + 1)
n3 + n2 + n + 1 diverges.



8. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=2

(n + 1)(2n + 1)(3n + 1)
n4 − n3 − n2 − n− 1

Solution: Expanding the summand, we get

(n + 1)(2n + 1)(3n + 1)
n3 + n2 + n + 1 =

6n3 + 11n2 + 6n + 1
n4 − n3 − n2 − n− 1 .

Notice that
6n3 + 11n2 + 6n + 1
n4 − n3 − n2 − n− 1 ≥ 6n3

n4
≥ n3

n4
=

1

n

for all n. Because
∞∑︂

n=2

1

n
is divergent, both as part of the harmonic series and a p-series with

p = 1 ≤ 1, it must be the case that
∞∑︂

n=2

(n + 1)(2n + 1)(3n + 1)
n4 − n3 − n2 − n− 1 diverges by the comparison test.



9. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=2

(n + 1)(2n + 1)(3n + 1)
n4 + n3 + n2 + n + 1

Solution: Since both the numerator and denominator are both obtained by increasing the leading
terms of the numerator and denominator, we cannot justly compare the two summands

(n + 1)(2n + 1)(3n + 1)
n4 + n3 + n2 + n + 1 and

6n3

n4

with an inequality. However, we suppose that
(n + 1)(2n + 1)(3n + 1)
n4 + n3 + n2 + n + 1 is similar to 6n3

n4
. Let’s use

the Limit Comparison Test.

lim
n→∞

(n+1)(2n+1)(3n+1)
n4+n3+n2+n+1

6n3

n4

= lim
n→∞

(n + 1)(2n + 1)(3n + 1)
n4 + n3 + n2 + n + 1 · n4

6n3

= lim
n→∞

6n3 + 11n2 + 6n + 1
n4 + n3 + n2 + n + 1 · n4

6n3

= lim
n→∞

6n7 + 11n6 + 6n5 + n4

6n7 + 6n6 + 6n5 + 6n4 + 6n3

= lim
n→∞

6 + 11
n + 6

n2 + 1
n3

6 + 6
n + 6

n2 + 6
n3 + 6

n4

=
6

6
= 1

Since lim
n→∞

(n+1)(2n+1)(3n+1)
n4+n3+n2+n+1

6n3

n4

= 1, either both
∞∑︂

n=2

(n + 1)(2n + 1)(3n + 1)
n4 + n3 + n2 + n + 1 and

∞∑︂
n=2

6n3

n4
both con-

verge or both diverge. Because
∞∑︂

n=2

6n3

n4
= 6

∞∑︂
n=2

1

n
diverges as part of the harmonic series or as a

p-series with p = 1 ≤ 1, it must be the case that
∞∑︂

n=2

(n + 1)(2n + 1)(3n + 1)
n4 + n3 + n2 + n + 1 diverges by the Limit

Comparison Test.



10. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=1

(n + 1)(2n + 1)(3n + 1)
n5 + n4 + n3 + n2 + n + 1

Solution: Since both the numerator and denominator are both obtained by increasing the leading
terms of the numerator and denominator, we cannot justly compare the two summands

(n + 1)(2n + 1)(3n + 1)
n5 + n4 + n3 + n2 + n + 1 and

6n3

n4

with an inequality. However, we suppose that
(n + 1)(2n + 1)(3n + 1)

n5 + n4 + n3 + n2 + n + 1 is similar to 6n3

n5
. Let’s

use the Limit Comparison Test.

lim
n→∞

(n+1)(2n+1)(3n+1)
n5+n4+n3+n2+n+1

6n3

n5

= lim
n→∞

(n + 1)(2n + 1)(3n + 1)
n5 + n4 + n3 + n2 + n + 1 · n5

6n3

= lim
n→∞

6n3 + 11n2 + 6n + 1
n5 + n4 + n3 + n2 + n + 1 · n5

6n3

= lim
n→∞

6n8 + 11n7 + 6n6 + n5

6n8 + 6n7 + 6n6 + 6n5 + 6n4 + 6n3

= lim
n→∞

6 + 11
n + 6

n2 + 1
n3

6 + 6
n + 6

n2 + 6
n3 + 6

n4 + 6
n3

=
6

6
= 1

Since lim
n→∞

(n+1)(2n+1)(3n+1)
n5+n4+n3+n2+n+1

6n3

n5

= 1, either both
∞∑︂

n=2

(n + 1)(2n + 1)(3n + 1)
n5 + n4 + n3 + n2 + n + 1 and

∞∑︂
n=2

6n3

n5
both

converge or both diverge. Because
∞∑︂

n=2

6n3

n5
= 6

∞∑︂
n=2

1

n2
converges as a p-series with p = 2 > 1, it

must be the case that
∞∑︂

n=2

(n + 1)(2n + 1)(3n + 1)
n5 + n4 + n3 + n2 + n + 1 converges by the Limit Comparison Test.



11. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=1

(−1)n+1n3

n4 + 1

Solution: Let bn =
n3

n4 + 1 . Now, bn consists of positive terms, bn is decreasing (it is a rational

function with denominator being a larger power), and lim
n→∞

bn = 0. Since
∞∑︂

n=1

(−1)n+1bn is an

alternating series, it converges by the Alternating Series Test.

12. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

∞∑︂
n=1

(−1)n+153n

3
√
n

Solution: Note that lim
n→∞

(−1)n+153n

3
√
n

DNE. It follows that
∞∑︂

n=1

(−1)n+153n

3
√
n

diverges by the Diver-

gence Test.

(Note: The Ratio Test works well with this problem, too)



13. Express the function f(x) = x2

2 + x3
as a the sum of a power series and find its radius of convergence.

Solution: It seems as though
x2

2 + x3
is somewhat similar to 1

1−□
. Now,

x2

2 + x3
= x2 1

2 + x3

= x2 1

2
(︁
1 + x3

2

)︁
=

x2

2
· 1

1−
(︁−x3

2

)︁
Because

1

1−□
=

∞∑︂
n=0

□n, it follows that 1

1−
(︂

−x3

2

)︂ =

∞∑︂
n=0

(︃
−x3

2

)︃n

. Therefore,

f(x) = x2

2 + x3

=
x2

2
· 1

1−
(︁−x3

2

)︁
=

x2

2
·

∞∑︂
n=0

(︃
−x3

2

)︃n

=
x2

2
·

∞∑︂
n=0

(−1)nx3n

2n

=

∞∑︂
n=0

(−1)nx3n+2

2n+1

Since
∞∑︂

n=0

□n converges when |□| < 1, it follows that
∞∑︂

n=0

(−1)nx3n+2

2n+1
converges when

⃓⃓⃓
−x3

2

⃓⃓⃓
< 1.

Now, ⃓⃓⃓⃓
−x3

2

⃓⃓⃓⃓
< 1

|x3| < 2
|x| < 3

√
2

It follows that the radius of convergence for our power series is R = 3
√
2.



14. Find the Taylor series for f(x) =
(︁
2
3

)︁x centered at 1 and find its interval of convergence.

Solution: Taylor series have the form

f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 +

f (4)(a)

4!
(x− a)4 + · · ·

We need to calculate f (n)(a) for several values of n in order to find a pattern for the Taylor series.

f(x) =
(︁
2
3

)︁x
f ′(x) = ln 2

3

(︁
2
3

)︁x
f ′′(x) =

(︁
ln 2

3

)︁2 (︁ 2
3

)︁x
f ′′′(x) =

(︁
ln 2

3

)︁3 (︁ 2
3

)︁x
f (4)(x) =

(︁
ln 2

3

)︁4 (︁ 2
3

)︁x
...

...
f (n)(x) =

(︁
ln 2

3

)︁n (︁ 2
3

)︁x

f(1) = 2
3

f ′(1) = 2
3 ln

2
3

f ′′(1) = 2
3

(︁
ln 2

3

)︁2
f ′′′(1) = 2

3

(︁
ln 2

3

)︁3
f (4)(1) = 2

3

(︁
ln 2

3

)︁4
...

...
f (n)(1) = 2

3

(︁
ln 2

3

)︁n
It follows that the Taylor series for f(x) at x = 1 is

∞∑︂
n=0

2
(︁
ln 2

3

)︁n
3 · n!

(x− 1)n

Its interval of convergence can be found by using the Ratio Test.

lim
n→∞

⃓⃓⃓⃓
an+1

an

⃓⃓⃓⃓
= lim

n→∞

⃓⃓⃓⃓
⃓2

(︁
ln 2

3

)︁n+1
(x− 1)n+1

3 · (n + 1)! · 3 · n!
2
(︁
ln 2

3

)︁n
(x− 1)n

⃓⃓⃓⃓
⃓

= lim
n→∞

⃓⃓⃓⃓
ln 2

3 (x− 1)
n + 1

⃓⃓⃓⃓
= 0

It follows that the interval of convergence is R.



15. Use the binomial series to find the series expansion of
−2

4
√
32 + 2x

.

Solution: From the binomial series, (1 + x)k =

∞∑︂
n=0

(︃
k

n

)︃
xn. We need to make

−2
4
√
32 + 2x

have this

form. Thus,
−2

4
√
32 + 2x

= −2
1

4
√︁
2(16 + x)

= −2
1

4
√
2 4
√︁
1 + x

16

=
−2
4
√
2

1
4
√︁
1 + x

16

= − 4
√
23

1
4
√︁
1 + x

16

= − 4
√
23

(︂
1 + x

16

)︂−1
4

From the binomial series,
(︁
1 + x

16

)︁−1
4 =

∞∑︂
n=0

(︃−1
4

n

)︃(︂ x

16

)︂n

. It follows that

−2
4
√
32 + 2x

= − 4
√
23

(︂
1 + x

16

)︂−1
4

= − 4
√
23

∞∑︂
n=0

(︃−1
4

n

)︃(︂ x

16

)︂n

16. Use the binomial series to find the coefficient of the third-degree term in the series expansion of
−2

4
√
32 + 2x

.

Solution: From the previous problem,
−2

4
√
32 + 2x

= − 4
√
23

∞∑︂
n=0

(︃−1
4

n

)︃(︂ x

16

)︂n

. Now, the third-degree

term in this expansion is

− 4
√
23
(︃−1

4

3

)︃(︂ x

16

)︂3

= − 4
√
23

(︁−1
4

)︁ (︁−5
4

)︁ (︁−9
4

)︁
3!

x3

163

= −2
3
4
(−1)(−5)(−9)

4 · 4 · 4 · 3 · 2 · 1
x3

163

= 2 3
4

45

219 · 3x
3

=
15

2
73
4

x3

It follows that the coefficient for the third-degree term is 15

2
73
4

.



17. Estimate the sum of the series
∞∑︂

n=1

(−1)n+1n3

n4 + 1 with the fourth partial sum of the series.

Solution:

s4 =

4∑︂
n=1

(−1)n+1n3

n4 + 1

=
13

14 + 1 − 23

24 + 1 +
33

34 + 1 − 43

44 + 1

=
19642

179129

18. How many terms must be used to approximate the sum of the series
∞∑︂

n=1

(−1)n+1n3

n4 + 1 to within 0.0001 of

the true value of the sum? Use Desmos to support your conclusion.

Solution: This is an alternating series with bn =
n3

n4 + 1 . Note that bn is positive, decreasing, and
lim
n→∞

bn = 0, so we can use the Alternating Series Estimation Theorem.

By the Alternating Series Estimation Theorem, |Rn| ≤ bn+1. So when bn+1 ≤ 0.0001, we would
have |Rn| ≤ 0.0001.
Consider,

bn+1 ≤ 0.0001
(n + 1)3

(n + 1)4 + 1 ≤ 0.0001

Algebraically, this is a very difficult problem. Using Desmos, we see that the first value of n that
satisfies this inequality is n = 10000.

It follows that we need 10000 terms in order to ensure that our approximation is within 0.0001 of
the true value of the sum.




