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1. Determine whether the following series converges or diverges. If it converges, find its sum.
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Solution: We can rewrite our series in sigma notation as
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We can manipulate our series now as
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2. Determine whether the following series converges or diverges. If it converges, find its sum. Justify your
conclusion as specifically as possible.

686 + 588 + 504 + 432 + - - -

Solution: Notice that each term of the series is obtained from the previous term by multiplying by

r= g. Thus, our series is a convergent geometric series with r € (—1,1). It follows that our series

686
converges to ¢ _ = 4802.
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3. Determine whether the following series converges or diverges. If it converges, find its sum. Justify your
conclusion as specifically as possible.

432 + 504 + 588 4 686 4 - - -

Solution: Notice that each term of the series is obtained from the previous term by multiplying by

r = %. Thus, our series is a divergent geometric series with r ¢ (—1,1).

4. Determine whether the following series converges or diverges. If it converges, find its sum. Justify your
conclusion as specifically as possible. Hint: Consider a partial fraction decomposition.
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Solution: Let’s find the partial fraction decomposition of . It turns out,
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Since lim s, = 2, it follows that —————— converges to 2.
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5. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

n=4
1
Solution: Note that =7 Since — is a p-series with p = 2 <— 1, so —
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diverges. Therefore, g — diverges.
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6. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.
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Solution: Note that E = g el Since E e converges as a p-series with p =7 > 1, the
n=4 n=4 n=4
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orlglnal series E — converges.
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7. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.
oo

Z (n+1)2n+1)(3n+1)
nd4+n24+n+1

Solution: Expanding the summand, we get

(n+1)(2n+1)(3n+1)  6n°+11n* +6n+1
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By the Divergence Test, the series Z diverges.
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8. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

i (n + 1)75271 +1)(3n +1)
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Solution: Expanding the summand, we get

(n+1)2n+1)(Bn+1)  6n®+ 11n® +6n + 1
nd+n2+n+1 T nt—nd—n2—n-—-1
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for all n. Because E — is divergent, both as part of the harmonic series and a p-series with
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p =1 <1, it must be the case that Z ( diverges by the comparison test.
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9. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.
o0

n4+n3+n2+n—|—1

n=2

Solution: Since both the numerator and denominator are both obtained by increasing the leading
terms of the numerator and denominator, we cannot justly compare the two summands
(n+1)(2n+1)3n+1) 6n3
and —
nt+nd+n?+n+1 n4
1)(2 1)(3 1 6n3
with an inequality. However, we suppose that (n+D)@n+1)Bn+1) is similar to ——. Let’s use
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the Limit Comparison Test.
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Since nhﬁngo 67%3 = 1, either both ; A 1 and ; gy both con-
verge or both diverge. Because Z — =6 Z — diverges as part of the harmonic series or as a
n=2 n n=2 n
- D(2n+1)(3n+1
p-series with p =1 < 1, it must be the case that ; (7:12—+ )753 :LL—;Q >J£ ::—1 ) diverges by the Limit
Comparison Test.




10. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

n5—|—n4—|—n3+n2—|—n+1

Solution: Since both the numerator and denominator are both obtained by increasing the leading
terms of the numerator and denominator, we cannot justly compare the two summands
(n+1)(2n+1)3n+1) d 6n3
an —
nd+nt4n34+n24n+1 nt
1)(2 1)(3 1 6n3
with an inequality. However, we suppose that ngn_:rn 4)_(|_ Z?:_ 7)1(2 :L_;;_'_)l is similar to n—nS Let’s
use the Limit Comparison Test.
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converge or both diverge. Because Z — =6 Z — converges as a p-series with p = 2 > 1, it
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11. Determine whether the following series converges or diverges. Justify your conclusion as specifically as
possible.

3
n
Solution: Let b, = e Now, b, consists of positive terms, b, is decreasing (it is a rational
n
(o]
function with denominator being a larger power), and lim b, = 0. Since Z(—l)”“bn is an
n—oo
n=1
alternating series, it converges by the Alternating Series Test.

12. Determine whether the following series converges or diverges. Justify your conclusion as specifically as

possible.
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Solution: Note that lim (1)75

lim 7 DNE. Tt follows that Z
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diverges by the Diver-

gence Test.

(Note: The Ratio Test works well with this problem, too)
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13. Express the function f(z) = 7T as a the sum of a power series and find its radius of convergence.

23
22
Solution: It seems as though is somewhat similar to . Now,
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Since Z O™ converges when || < 1, it follows that Z o1 converges when ‘T < 1.
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Now,
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It follows that the radius of convergence for our power series is R = /2.




14. Find the Taylor series for f(x) = (%)w centered at 1 and find its interval of convergence.

Solution: Taylor series have the form
7 " (4)
f@)+ fa)e—a) + L0 a0+ DO o g @0y
We need to calculate f(™ (a) for several values of n in order to find a pattern for the Taylor series.
fl) = () - = 3
2 (27T ’ 2 2
f'(@) = lng(g) f'(1) = 3hng ,
Fla) = w2 () 70 = wI
@) = (3)7() f = g,
0@ = (i) (@) /O = 3(n3)
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It follows that the Taylor series for f(z) at 2 =1 is
> 2 (In2)"
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Its interval of convergence can be found by using the Ratio Test.
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It follows that the interval of convergence is R.
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15. Use the binomial series to find the series expansion of

— (k -2
Solution: From the binomial series, (1 + z)* = Z ( )x" We need to make ——=——— have this
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form. Thus,
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From the binomial series, (1 + %)% = Z (7‘;) (%) . It follows that
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16. Use the binomial series to find the coefficient of the third-degree term in the series expansion of ————.
& P V32 1 2z
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Solution: From the previ bl ,7:—\/ 1 (—).N . the third-d
olution rom € previous problem \4/32— Z ( n ) ow (] 1r egree

term in this expansion is
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It follows that the coefficient for the third-degree term is 2%
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17. Estimate the sum of the series Z (4)74_111 with the fourth partial sum of the series.
n
n=1
Solution: A
B ( 1)n+ln3
S4= Z n4 + 1
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18. How many terms must be used to approximate the sum of the series Z A1 to within 0.0001 of

n=1
the true value of the sum? Use Desmos to support your conclusion.

Solution: This is an alternating series with b,, = P Note that b, is positive, decreasing, and

nt

lim b, = 0, so we can use the Alternating Series Estimation Theorem.
n—oo

By the Alternating Series Estimation Theorem, |R,| < b,1+1. So when b,11 < 0.0001, we would
have |R,| < 0.0001.
Consider,

bpi1 < 0.0001

(n+1)3
— 7 0. 1
1 = o

Algebraically, this is a very difficult problem. Using Desmos, we see that the first value of n that
satisfies this inequality is n = 10000.

1) ® _(e*
(n+l)4+1 (17+1)J‘+1
= 0.0001 = 0.0000999900009999

@ n=9999 @ n=10000

® 10000 1 ® 10000

It follows that we need 10000 terms in order to ensure that our approximation is within 0.0001 of
the true value of the sum.






