MTH 252Z Lab Volume

Damien Adams

Prompts

- 1. Consider a solid of revolution with volume V. When should a disk method be used to find V? When should a washer method be used for finding V? Draw a solid to represent each of these three situations.
- 2. Let \mathcal{R} be the region in the first quadrant enclosed by the curves $y = \sin x$, $y = \cos x$, and the y-axis. For each of the following prompts, you should include a sketch of the region/solid being considered, as well as a labeled typical disk or washer.
 - (a) Let S_1 be the solid obtained by rotating R about the x-axis. Write a definite integral that represents the volume of S_1 .
 - (b) Let S_2 be the solid obtained by rotating \mathcal{R} about the line y=2. Write a definite integral that represents the volume of S_2 .
- 3. Let $f(x) = x^2 + 2$ and $g(x) = 4 x^2$, and let \mathcal{R} represent the region enclosed between y = f(x) and y = g(x). Let \mathcal{S} be the "ring" obtained by rotating \mathcal{R} about the x-axis.
 - (a) Set up an integral that represents the area of \mathcal{R} .
 - (b) Find the area of \mathcal{R} .
 - (c) Set up an integral that represents the volume of S.
 - (d) Find the value of S.
- 4. Consider the region enclosed by a semicircle of radius r (having equation $f(x) = \sqrt{r^2 x^2}$) and the x-axis. Sketch this region. What is the solid of revolution obtained by rotating this region about the x-axis? Sketch this solid and find the volume of this solid.
- 5. Let T be the triangular region with vertices (0,0), (1,0), and (1,2). Let V be the volume of the solid obtained by rotating T about the line x=a with a>1. Find V when
 - (a) a = 2
 - (b) a = 3
 - (c) a = 10