MTH 252Z Lab Numerical Approximations

Damien Adams

Prompts

- 1. We have L_n, R_n, M_n, T_n , and S_n . Which one is generally the most accurate? Which two are the least accurate?
- 2. Which is generally more accurate: T_n or M_n ?
- 3. The integral $\int_2^3 \frac{2}{x \ln x} dx$ can be found exactly. We will now focus on approximations.
 - (a) Evaluate $\int_2^3 \frac{2}{x \ln x} dx$ using integration strategies. Approximate your conclusion to the nearest ten-thousandth.
 - (b) Approximate $\int_2^3 \frac{2}{x \ln x} dx$ by computing the following. Round each conclusion to the nearest ten-thousandth.
 - i. Compute L_4 .
 - ii. Compute R_4 .
 - iii. Compute M_4 .
 - iv. Compute T_4 .
 - v. Compute S_4 .
 - (c) Compare the results of the previous computations with the conclusion you found in (a). Which strategy was most accurate? Which was least accurate?
- 4. An antiderivative for $f(x) = e^{-x^2}$ is difficult to find, but the area underneath the curve from 0 to 1 can still be represented by $\int_0^1 e^{-x^2} dx$. Approximate this value to the nearest thousandth by using
 - (a) M_4
 - (b) T_4
 - (c) S_4

Then find an error bound on each of the strategies used above by using a value of K=2.

- (d) E_M
- (e) E_T
- 5. The velocity of Supergirl flying through the air (in km/s) is recorded every 5 seconds from the moment she takes flight. The results are provided in the table below:

$t ext{ (sec)}$	0	5	10	15	20	25	30	35	40	45	50
v(t) (km/s)	0	80	100	128	144	160	152	136	128	120	136

Estimate the distance that Supergirl traveled (to the nearest km) by using each of the approximation strategies below.

- (a) T_{10}
- (b) S_{10}