MTH 252Z Lab Area Between Curves

Damien Adams

Prompts

- 1. Let $f(x) = 2^x$ and $g(x) = -x^2 + 2x + 1$.
 - (a) Use Desmos to graph both f(x) and g(x).
 - (b) Using the graph, identify the two points of intersection for these two curves. Determine which curve is greater than the other between the intersection points.
 - (c) Set up an integral that represents the area of the region enclosed by the curves y = f(x) and y = g(x).
 - (d) Find the exact value of the area of the region between the two curves.
- 2. Find the exact value of the area of the region between the curves $y = \sqrt{x}$ and $y = x^3$.
- 3. On Desmos, graph both $x + y^2 = 56$ and x + y = 0. Identify the region enclosed by these two curves. Determine whether to integrate with respect to x or y, and find the area of the region.
- 4. Consider the curves given by $y = \sin x$ and $y = \cos x$. For each of the following problems, you should include a sketch of the region/solid being considered, as well as a labeled representative slice.
 - (a) Sketch the region \mathcal{R} bounded by the y-axis, $y = \cos x$, and $y = \sin x$ up to the first positive value of x at which the curves intersect. What is the exact intersection point of the curves? Be sure to list the *point*, not just an x- or y-value.
 - (b) Set up a definite integral with differential dx whose value is the exact area of \mathcal{R} .
 - (c) Find the exact value of the integral you found in (a).
- 5. Consider the region \mathcal{R} bounded by $y = \sin(x^2)$, y = 0, x = 0, and $x = \sqrt{\pi}$. Graph this region in Desmos, sketch the region on your paper, and then set up (but do not evaluate) an integral that represents the exact area of \mathcal{R} .
- 6. Consider the region S bounded by $y = \sin(x^2)$, y = 1, and x = 0. Sketch this region in Desmos, and then set up (but do not evaluate) an integral that represents the exact area of S.
- 7. Trigonometry is based on the unit circle. If trigonometry were based on the unit hyperbola, we would get a different topic called hyperbolic trigonometry. The standard functions in hyperbolic trigonometry are hyperbolic sine, $\sinh(x)$, and hyperbolic cosine, $\cosh(x)$. It turns out, the definitions for these functions are

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

Using these definitions, find the area enclosed by sinh(x) and cosh(x) between x = -1 and x = 1.