MTH 251Z Lab Implicit Differentiation

Damien Adams

Prompts

- 1. Under what conditions should we use implicit differentiation?
- 2. The formula $25 = x^2 + y^2$ represents a circle centered at the origin of radius 5. Find a formula for $\frac{dy}{dx}$, using proper notation. Graph the equation on Desmos.
- 3. The graph of $3y^2 = \left(x \frac{1}{2}\right)^3$ is called a semicubical parabola. Find a formula for $\frac{dy}{dx}$, using proper notation. Graph the equation on Desmos.
- 4. The equation $81x^2 16y^2 162x 64y = 1279$ has a graph of a hyperbola centered at (1, -2). Find a formula for $\frac{dy}{dx}$, using proper notation. Graph the equation on Desmos.
- 5. The equation $y^2(y^2 4) = x^2(x^2 5)$ has a graph known as a devil's curve. Find the equation of the line tangent to this curve at the point (0, -2), using proper notation. Graph the equation on Desmos.
- 6. Below is the graph of the ellipse whose equation is $x^2 + 4y^2 = 16$ along with two different tangent lines.
 - (a) Find the equation of the line tangent to the ellipse at the point $(-2, -\sqrt{3})$.
 - (b) Find the equation of the line tangent to the ellipse at the point $(-2, \sqrt{3})$.
 - (c) Find out where the two tangent lines above intersect.

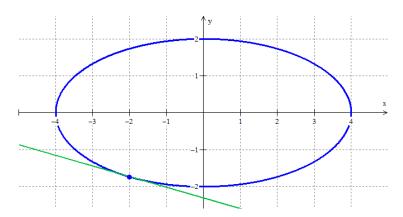


Figure 1: The graph of $x^2 + 4y^2 = 16$ with a tangent line where x = -2.