MTH 252Z Lab Antiderivatives

Damien Adams

Prompts

1. Complete the following table by finding a particular antiderivative of the function stated on the left.

Function	Particular Antiderivative
$x^n, n \neq 1$	
1	
$\begin{bmatrix} \overline{x} \\ e^x \end{bmatrix}$	
$\cos x$	
$\sin x$	
$\sec^2 x$	
$\sec x \tan x$	
1	
$\frac{\sqrt{1-x^2}}{1}$	
$1 + x^2$	

2. Evaluate the following indefinite integrals.

(a)
$$\int 3 dx$$
 (b) $\int (-7) dx$ (c) $\int (4x) dx$ (d) $\int \sqrt[7]{x^4} dx$ (e) $\int \frac{2}{\sqrt[5]{x^6}} dx$ (f) $\int e^x dx$ (f) $\int (-\cos x \cot x) dx$ (g) $\int 2\cos x dx$ (l) $\int \frac{1}{1+x^2} dx$ (l) $\int \frac{1}{x} dx$

- 3. Let $f(x) = \frac{2}{x} 6x^2 + \frac{1}{1+x^2}$.
 - (a) Find the most general antiderivative of f.
 - (b) Find the antiderivative of f that passes through the point (1,0).
- 4. Evaluate $\int \left(3\cos t \frac{t^3 + 2\sqrt[3]{t}}{t^2}\right) dt$ by first rewriting the integrand so that it has no fractions (except possibly in the powers).
- 5. Let $f''(x) = e^x \sin x + 3x^4$.
 - (a) Find every function f'(x) satisfying the equation above.
 - (b) Find f'(x) such that f'(0) = -1.
 - (c) Using the formula for f'(x) that you just found, find f(x) such that f(0) = 2.