MTH 251Z Lab Limits

Damien Adams

Prompts

1. The graph of y = g(t) is given below. Use the graph to find the following limits.

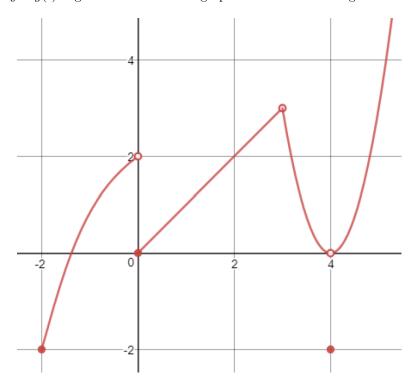


Figure 1: Graph of y = g(t)

(a) $\lim_{t\to 0^-} g(t)$

(d) $\lim_{t \to 3^-} g(t)$

(g) $\lim_{t \to 4^-} g(t)$

(b) $\lim_{t\to 0^+} g(t)$

(e) $\lim_{t \to 3^+} g(t)$

(h) $\lim_{t \to 4^+} g(t)$

(c) $\lim_{t\to 0} g(t)$

(f) $\lim_{t \to 3} g(t)$

(i) $\lim_{t \to 4} g(t)$

2. Use the strategy introduced in class to guess the following limits. Show all work to support your conclusion.

(a)
$$\lim_{x \to 2} \left(x^3 - 2^x - \sqrt{2x} \right)$$

(a)
$$\lim_{x \to 2} \left(x^3 - 2^x - \sqrt{2x} \right)$$
 (b) $\lim_{x \to 5} \left(\cos \left(\frac{\pi}{2} x \right) + 1 \right)$ (c) $\lim_{x \to 1} \frac{x^2 - 3x + 2}{2x^2 + 3x - 5}$

(c)
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{2x^2 + 3x - 5}$$

3. Use the strategy introduced in class to guess the following limits. Show all work to support your conclusion.

(a)
$$\lim_{x \to 2^{-}} \frac{2x^2 + x - 10}{|x - 2|}$$
 (b) $\lim_{x \to 2^{+}} \frac{2x^2 + x - 10}{|x - 2|}$ (c) $\lim_{x \to 2} \frac{2x^2 + x - 10}{|x - 2|}$

(b)
$$\lim_{x \to 2^+} \frac{2x^2 + x - 10}{|x - 2|}$$

(c)
$$\lim_{x \to 2} \frac{2x^2 + x - 10}{|x - 2|}$$

4. Use your knowledge of the graphs of the following functions to evaluate the following limits.

(a)
$$\lim_{x \to 0^+} \ln x$$

(b)
$$\lim_{x \to \frac{\pi}{2}^-} \tan x$$
 (c) $\lim_{x \to \frac{\pi}{2}} \tan x$

(c)
$$\lim_{x \to \frac{\pi}{\alpha}} \tan x$$

(d)
$$\lim_{x \to 0} \frac{1}{x^2}$$