MTH 251Z Lab Introduction to Calculus

Damien Adams

Prompts

- 1. Find an equation of the secant line (that is, the line through the two points on the curve) on $y = x^2$ through the points corresponding to x = 1 and x = 3. Format your conclusion in either point-slope form or slope-intercept form.
- 2. Galileo dropped a rock from the Leaning Tower of Pisa, about 55m above ground. The distance traveled by the rock t seconds after it left Galileo's hand is $s(t) = 4.9t^2$ meters.
 - (a) Does the rock have a constant velocity or does the velocity change? Justify your conclusion.
 - (b) How far does the rock travel in 3 seconds? Don't forget units!
 - (c) Compute the rock's average velocity over the time interval [2.5, 3]. Do not round.
 - (d) Find the rock's average velocity over the given time intervals.

Interval	Average Velocity
[2.5, 3]	
[2.9, 3]	
[- / -]	
[2.99, 3]	
[2.999, 3]	

- (e) Using the previous table, estimate the instantaneous velocity of the rock after 3 seconds.
- 3. Let $f(x) = \ln x$. The point P(1,0) is on the graph of y = f(x).
 - (a) Use Desmos to graph y = f(x) and plot P.
 - (b) Plot the point R(e, 1). If a secant line is drawn from P to R and has slope m_{PR} , then what is m_{PR} ?
 - (c) Let Q(x, f(x)) be a point on the curve y = f(x) that changes as x changes. If m_{PQ} is the slope of the secant line on PQ, then m_{PQ} changes as x changes. Compute the values of m_{PQ} for the different values of x below (just like in class). Round any values to the nearest hundred-thousandth.

1

Hint:
$$m_{PQ} = \frac{f(x) - f(1)}{x - 1}$$
.

x	m_{PQ}
2	
1.5	
1.1	
1.01	
1.001	
1.0001	

- (d) Using the previous table, estimate the slope of the tangent line to y = f(x) at P.
- 4. Use the strategy presented in class to find an equation of the tangent line to $y=x^2$ at the point (2,4). Format your conclusion in either point-slope form or slope-intercept form.
- 5. For any function f(x), the difference quotient we will refer to in this class is $\frac{f(x+h)-f(x)}{h}$. For each of the following functions, find its difference quotient and simplify if possible.
 - (a) $c(x) = x^3$
 - (b) $r(x) = \frac{1}{x}$