MTH 254 Midterm Review

Damien Adams

- 1. Let P(3,-1,-4), Q(2,5,4), R(-2,7,1), $\mathbf{u}=\overrightarrow{PQ}$, $\mathbf{v}=\overrightarrow{PR}$.
 - (a) Draw a 3-dimensional rectangular coordinate system. Label the positive sides of the axes according to the right-hand rule, draw tick marks, and provide a scale.
 - (b) Plot P, Q, and R. Be sure to include any guiding lines to give context to the points.
 - (c) Graph **u** and **v**.
 - (d) Write **u** in component form.
 - (e) Write \mathbf{v} in terms of \mathbf{i} , \mathbf{j} , and \mathbf{k} .
 - (f) Find $\mathbf{u} + \mathbf{v}$.
 - (g) Find $\mathbf{u} \mathbf{v}$.
 - (h) Find $2\mathbf{u} + 3\mathbf{v}$.
- 2. Let A(1,1), B(2,3), C(5,4), $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{BC}$.
 - (a) Draw a Cartesian plane. Label the positive sides of each axis, draw tick marks, and provide a scale.
 - (b) Plot A, B, C.
 - (c) Graph the position vectors for \mathbf{u} and \mathbf{v} .
 - (d) Graph $\mathbf{u} + \mathbf{v}$. Label the vector.
 - (e) Graph $\mathbf{u} \mathbf{v}$. Label the vector.
 - (f) Graph $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$. Label the vector.
 - (g) Graph $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$. Label the vector.
- 3. Let C be the curve determined by the vector function $\mathbf{r}(t) = \langle 2t, t^2, \frac{1}{3}t^3 \rangle$ with $2 \le t \le 4$. Find the exact length of C.

- 4. Let $\mathbf{u} = \mathbf{i} + 2\mathbf{j} 5\mathbf{k}$ and $\mathbf{v} = \langle -3, 1, 4 \rangle$.
 - (a) Draw a 3-dimensional rectangular coordinate system. Label the positive sides of the axes according to the right-hand rule, draw tick marks, and provide a scale. Graph both ${\bf u}$ and ${\bf v}$ on your coordinate system.
 - (b) Find |**u**|.
 - (c) Find a unit vector in the same direction as **u**.
 - (d) Find the smallest angle between **u** and **v**. Round your conclusion to the nearest tenth of a radian.
 - (e) Are \mathbf{u} and \mathbf{v} orthogonal?
 - (f) Find a nonzero vector orthogonal to both \mathbf{u} and \mathbf{v} .
 - (g) Find the area of the parallelogram formed by **u** and **v**.
 - (h) Find proj_u v.
 - (i) Find comp_v **u**.
 - (j) Find the symmetric equations for the line passing through the terminal points of \mathbf{u} and \mathbf{v} .
 - (k) Find the parametric equations for the line through the terminal point of the position vector for u with direction vector v.
 - (l) Find a linear equation of the plane containing \mathbf{u}, \mathbf{v} , and $\mathbf{0}$.
- 5. Let $\mathbf{r}(t) = \langle t^3 4t, \sin\left(\frac{\pi}{3}t\right) \rangle$ with $-3 \le t \le 3$. Let C be the curve determined by \mathbf{r} .
 - (a) Produce a table of values to find the points on C.
 - (b) Draw a Cartesian plane, and sketch C. Include arrows to indicate the direction that \mathbf{r} travels as t increases.
 - (c) Graph $\mathbf{r}(1)$. Label the vector.
 - (d) Graph $\mathbf{T}(1)$. Label the vector.
 - (e) Graph $\mathbf{N}(1)$. Label the vector.
 - (f) Find $\mathbf{T}(1)$.
 - (g) Find an equation of the tangent line to C at the point where t=1.
 - (h) Find the curvature of C when t=1. Round your conclusion to the nearest hundredth.
- 6. Suppose a particle is moving in space with initial position $\mathbf{r}(0) = \mathbf{i} + \mathbf{k}$ and velocity

$$\mathbf{v}(t) = \left\langle \frac{2}{1+t^2}, 5e^{5t-5}, \frac{4}{t+1} \right\rangle$$

where $\mathbf{v}(t)$ is measured in meters per second. Let C represent the path the particle takes as t increases. Find the following quantities. Use exact values, and respond to each part with a sentence with units.

- (a) The velocity of the particle after 1 second.
- (b) The position of the particle at time t.
- (c) The position of the particle after 1 second.
- (d) The acceleration of the particle at time t.
- (e) The acceleration of the particle after 1 second.
- (f) The exact displacement vector of the particle in the first 3 seconds.
- (g) The tangential component of acceleration after 1 second.
- (h) The normal component of acceleration after 1 second.
- (i) The curvature of C at the point when t = 1.