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Who are we?

Bre, applied mathematics major, transferring to PSU in the summer.

Rocky, electrical engineering major, planning on transferring to PSU
in the fall.
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Our Angle of Attack

Recall that each column may be interpreted as the final resting point of
the standard basis vectors.

Figure: Caption

A =

[
1 −1
4 3

]
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Matrix Transformations in the Same Dimension

Reflection
Rotation
Shear
Scale
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Reflection

Figure: The unit square reflected about the x-axis.

General Standard Transformation Matrix

T : R2 7→ R2 is A = 1
a2+b2

[
a2 − b2 2ab
2ab b2 − a2

]
T : R3 7→ R3 is

A = 1
a2+b2+c2

−a2 + b2 + c2 −2ab −2ac
−2ab a2 − b2 + c2 −2bc
−2ac −2bc a2 + b2 − c2
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Rotation

Figure: The unit square rotated through π
2 .

General Standard Transformation Matrix

T : R2 7→ R2 is

[
cos(θ) sin(θ)
sin(θ) cos(θ)

]

T : R3 7→ R3 is Ax =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)
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Shear

Figure: The unit square with a shear transformation applied.

General Standard Transformation Matrix

T : R2 7→ R2 is

[
1 c
0 1

]

T : R3 7→ R3 is A =

1 0 c
0 1 0
0 0 1
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Scale

Figure: The unit square scaled by 2.

General Standard Transformation Matrix

T : R2 7→ R2 is A =

[
c1 0
0 c2

]

T : R2 7→ R2 is

λ1 0 0
0 λ2 0
0 0 λ3
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The Determinant

For T : Rn → Rn, det(A) = factor of area/volume change.

Since determinants can only be calculated for square matrices,
T : Rm → Rn transformations are not applicable.
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The Determinant in R2

Figure: A parallelogram in R2.

The base of the parallelogram is b =

[
b
0

]
The height of the parallelogram is h =

[
0
h

]
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The Determinant in R2

A scale transformation is A =

[
c1 0
0 c2

]
. It has det(A) = c1 ∗ c2

T (b) = c1b

T (h) = c2h

So, the transformed area is T (A) = T (b) ∗ T (h) = (c1c2)bh = det(A)A
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The Determinant in R3

V = bhw . The transformation matrix will be A =

c1 0 0
0 c2 0
0 0 c3

, with
det(A) = c1c2c3.

b =

b0
0

 7→ T (b) =

c1b0
0


h =

0h
0

 7→ T (h) =

 0
c2h
0


w =

0
0
w

 7→ T (w) =

 0
0

c3w


So, the transformed volume is T (V ) = c1c2c3(bhw) = det(A)V .
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The Determinant

Example: A =

[
2 2
1 3

]
det(A) = 4

Figure: A parallelogram made of the standard basis vectors as vertices.
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Isomorphic Planes

To simply bring your basis vectors into Rm, pad your transformation
matrix with zeros to give it the appropriate dimensions:

A =

1 0
0 1
0 0


In addition to the previously covered transformations, this opens up
infinitely many new axes about which the image can be rotated.
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Isomorphic Planes

Rotation about the three main
axes in R3 is relatively simple.
The standard rotational matrices
for R3 → R3 are used, with the
third column removed.

Notice the column corresponding
to the axis of rotation remains
unchanged.

Tx(θ) =

1 0
0 − sin θ
0 cos θ


Ty (θ) =

 cos θ 0
0 1

− sin θ 0


Tz(θ) =

cos θ − sin θ
sin θ cos θ
0 0
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Arbitrary Axis Rotation

Rotation around an arbitrary axis becomes trickier. Two pieces of
information are needed:

Unit vector along your axis, u = (u1, u2, u3)
Angle of rotation, θ cos θ + u21(1− cos θ) u1u2(1− cos θ)− u3 sin θ u1u3(1− cos θ) + u2 sin θ

u2u1(1− cos θ) + u3 sin θ cos θ + u22(1− cos θ) u2u3(1− cos θ)− u1 sin θ
u3u1(1− cos θ)− u2 sin θ u3u2(1− cos θ) + u1 sin θ cos θ + u23(1− cos θ)
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Combining Matrices

Transformations may be stacked. A composite matrix may be found
by multiplying A× B.
Order matters! This is consistent with the non-commutative property
of matrix multiplication.

A =

[
1 2
0 1

]
,B =

[
cos π

3 sin π
3

− sin π
3 cos π

3

]

Figure: i2&j2 : T (x) = AB(x; i3&j3 : T (x) = BA(x
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Recap

4 main types of transformations: rotation, reflection, scale, and shear.

The determinant of a square standard transformation matrix tells you
how much the area/volume of a shape will be stretched.

You can use isomorphic planes to go between dimensions.

A standard transformation matrix can contain more then one type of
transformation.
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Thank you for listening!

Any questions?
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