Exam 1 Review / Math 251 / Differential Calculus

- 1. The point P(2, 8) lies on the curve $y = x^3$
 - a. Graph the curve $y = x^3$ and plot the point P. (green line is just to show the point on the graph)

b. If Q is the point (x, x^3) , find the slope of the secant line PQ for the following values of x, rounding to five decimal places:

X	$m_{sec} = \frac{f(x) - f(2)}{x - 2}$
1.5	9.25
1.9	11.41
1.99	11.9401
2	Do not calculate at 2
2.01	12.0601
2.1	12.61
2.5	15.25

c. Taking part (b) into consideration, make an educated guess at the value of the slope of the tangent line to the curve at P(2, 8):

$$m_{tan} \approx \frac{11.9401 + 12.0601}{2} \approx 12.0001$$

I believe the slope of tangent at point (2, 8) is roughly 12

- 2. The point $P(2,\frac{1}{2})$ lies on the curve $y = \frac{1}{x}$
 - a. Graph the curve $y = \frac{1}{x}$ and plot the point P. (green line is just to show the point on the graph)

b. If Q is the point $(x, \frac{1}{x})$, find the slope of the secant line PQ for the following values of x, rounding to five decimal places:

X	$m_{sec} = \frac{f(x) - f(2)}{x - 2}$
1.5	$-\frac{1}{3}$, or -0.33333
1.9	$-\frac{5}{19}$, or -0.26316
1.99	$-\frac{50}{199}$, or -0.25126
2	Do not calculate at 2
2.01	$-\frac{50}{201}$, or -0.24876
2.1	$-\frac{5}{21}$, or -0.23810
2.5	$-\frac{1}{5}$, or -0.2

c. Taking part (b) into consideration, make an educated guess at the value of the slope of the tangent line to the curve at $P(2, \frac{1}{2})$:

$$m_{tan} \approx \frac{-0.25126 + (-0.24876)}{2} \approx -0.25001$$

I believe the slope of tangent at point $(2, \frac{1}{2})$ is roughly -0.25

- 3. Sketch the graph of a function *f* satisfying all of the given conditions:
- a. $\lim_{x \to -\infty} f(x) = -\infty$ b. $\lim_{x \to \infty} f(x) = \infty$ c. $\lim_{x \to -2} f(x) = 1$ c. $\lim_{x \to -2} f(x) = 1$ c. $\lim_{x \to -2} f(x) = -1$
- c. $\lim_{x\to 0^{-}} f(x) = -\infty$ g. f(-2) = -1

d.
$$\lim_{x \to 0^+} f(x) = \infty$$
 h. $f(2) = 1$

- 4. Sketch the graph of a function *f* satisfying all of the given conditions:
- a. $\lim_{x \to -\infty} f(x) = 3$ e. $\lim_{x \to 2^{-}} f(x) = \infty$
- b. $\lim_{x\to\infty} f(x) = -4$ f. $\lim_{x\to 2^+} f(x) = -\infty$
- c. $\lim_{x\to 0^-} f(x) = -2$ g. f(0) = 0
- x 2 = 00 1 5 _م بە x-7-00-3 X **جرها ا**0 0 -5 5 x > ot = -2 1 $\chi \rightarrow \varphi = -4$ -5 $\chi \rightarrow a^{+} = -\infty$

d. $\lim_{x\to 0^+} f(x) = 4$

No

5. Using the graph of y = f(x) below, answer the following questions.

- p. What is $\lim_{x \to -1} f(x)$? Does Not Exist
- q. What is f(-1)?
- **r.** Is f continuous at x = -1? No
- s. What is $\lim_{x \to 3^{-}} f(x)$?
- t. What is $\lim_{x \to 3^+} f(x)$? -2

- u. What is lim f(x)?
 -2
 v. What is f(3)?
 -2
- w. Is f continuous at x = 3? Yes
- x. Where are the discontinuities of f? Identify each discontinuity as either a removable, jump, or infinite discontinuity. At x = -4, Infinite discontinuity, and x = -1 Jump discontinuity

7.	a.	True, pg. 153 Higher Derivatives
	b.	False, the graph of $f(t)$ does not exist for values t < -2 (only continuous approaching -2 from the right)
	c.	False, pg. 113 Continuity
	d.	True
	e.	False , the notation $f''(a)$ is the second derivative of the function f

8.

$$f(x) = -\begin{cases} x^3, & \text{if } x < -1 \\ 0, & \text{if } -1 \le x < 2 \\ \sqrt{x-2}, & \text{if } x \ge 2 \end{cases}$$

Also, Identify all of the discontinuities of *f*. Are they removable, jump, or infinite?

Exam 1 Review

9. Using the definition of a derivative, find the derivative function of:

$$f(x) = 2x^2 + 1$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= **4***x*

10. Using the definition of a derivative, find the derivative function of:

$$g(x)=\frac{3-x}{x}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$=-\frac{3}{r^2}$$

11. Find an equation of the tangent line to the curve $f(x) = 2x^2 + 1$ at (-2, 9). Do not use any shortcuts for finding the slope.

$$m_{tan} = 4x$$

 $f'(-2) = 4(-2) = -8$

Point-slope Equation for the Tangent Line:

$$y-9=-8(x-(-2))$$

Or, Slope-intercept form (not required)

$$y = -8x - 7$$

12. Find an equation of the tangent line to the curve $g(x) = \frac{3-x}{x}$, at (-1, -4). Do not use any shortcuts for finding the slope.

$$m_{tan} = -\frac{3}{x^2}$$
$$g'(-1) = -\frac{3}{(-1)^2} = -3$$

Point-slope Equation for the Tangent Line:

$$y - (-4) = -3(x - (-1))$$

 $y + 4 = -3(x + 1)$

Or, Slope-intercept form (not required)

y = -3x - 7

13. Sketch a graph of $f(x) = 2x^2 + 1$. Then, sketch the graph of f'(x).

14. Sketch a graph of h(x) = tan(x). Then, sketch the graph of h'(x).

15. Below is the graph of a function g(x). Sketch a graph of g'(x).

