MTH 255 Parametric Surfaces Homework

Damien Adams

1. Identify the surface whose vector equation is $\mathbf{r}(u, v)=(u+v) \mathbf{i}+(3-v) \mathbf{j}+(1+4 u+5 v) \mathbf{k}$.
2. Use GeoGebra to graph the parametric surface whose equation is $\mathbf{r}(u, v)=\left\langle u^{2}+1, v^{3}+1, u+v\right\rangle$ with $-1 \leq u, v \leq 1$.
3. Use GeoGebra to graph the parametric surface whose equation is $\mathbf{r}(u, v)=\left\langle u \cos v, u \sin v, u^{5}\right\rangle$ with $-1 \leq u \leq 1$ and $0 \leq v \leq 2 \pi$.
4. Use GeoGebra to graph the parametric surface whose equations are given by

$$
\begin{aligned}
& x=\sin v \\
& y=\cos u \sin 4 v \\
& z=\sin 2 u \sin 4 v
\end{aligned}
$$

where $u \in[0,2 \pi]$ and $v \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
5. Find a parametric representation of the part of the hyperboloid $x^{2}+y^{2}-z^{2}=1$ that lies to the right of the $x z$-plane.
6. Find a parametric representation for the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.
7. Find parametric equations for the surface obtained by rotating the curve whose equation is $y=e^{-x}$ with $x \in[0,3]$ about the x-axis. Use GeoGebra to graph this surface.

