10.5 Parametric Surfaces

10.5.1 Graphing a Parametric Surface

Previously, parametric equations were used to describe lines. Now, we will use them to describe surfaces.

Parametric equations of one parameter produce a one-dimensional graph (curve). Parametric equations of two parameters produce a two-dimensional graph (surface). Parametric equations of n parameters produce an n-dimensional graph.

Definition

The set of all points (x, y, z) in \mathbb{R}^{3} such that

$$
\begin{equation*}
x=x(u, v) \quad y=y(u, v) \quad z=z(u, v) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k} \tag{2}
\end{equation*}
$$

where $(u, v) \in D$, a region in the $u v$-plane. The graph, S, produced by either (1) or (2) is called a parametric surface. The equations in (1) are called parametric equations of S. The equation (2) is called a vector equation for S.
Note that the interior of the surface is not part of the graph.
Note: To plot a parametric surface in GeoGebra, use the command

```
S = Surface( x(u,v) , y(u,v) , z(u,v) , u , START , END , v , START , END )
```

where the first START and END represent the domain for u, and the second pair represents the domain of v.
Example 1. Let $\mathbf{r}(u, v)=\left\langle\ln u, \sqrt{2 v}, \frac{2}{u v}\right\rangle$.
(a) Determine and sketch the domain of \mathbf{r}.
(b) Use GeoGebra to graph the surface described by \mathbf{r}.

10.5.2 Parametrizing a Surface

Example 2. Find a parametric representation for the part of the elliptic paraboloid $x+$ $y^{2}+2 z^{2}=4$ that lies above the plane $z=0$.

Example 3. Let D be the cylinder $x^{2}+y^{2}=4$ with $0 \leq z \leq 1$. Find a parametrization for D.

Example 4. Find a parametrization for the lower half of the sphere of radius 3 centered at the origin.

10.5.3 Tangent Planes to Parametric Surfaces

Suppose we want to linearize a surface S, where S is defined parametrically as

$$
\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle
$$

Let's say our point is found when $u=u_{0}$ and $v=v_{0}$. Then we have the point $P\left(x_{0}, y_{0}, z_{0}\right)$ where $x_{0}=x\left(u_{0}, v_{0}\right), y_{0}=y\left(u_{0}, v_{0}\right)$, and $z_{0}=z\left(u_{0}, v_{0}\right)$.

Notice

$$
\mathbf{r}_{u}(u, v)=\left\langle\frac{\partial x}{\partial u}(u, v), \frac{\partial y}{\partial u}(u, v), \frac{\partial z}{\partial u}(u, v)\right\rangle \quad, \quad \mathbf{r}_{v}(u, v)=\left\langle\frac{\partial x}{\partial v}(u, v), \frac{\partial y}{\partial v}(u, v), \frac{\partial z}{\partial v}(u, v)\right\rangle
$$

Then $\mathbf{r}_{u}(u, v)$ and $\mathbf{r}_{v}(u, v)$ are vectors on the tangent plane to S at the point determined by (u, v). Moreover, a normal vector to the tangent plane at P is

$$
\mathbf{n}_{\left(u_{0}, v_{0}\right)}=\mathbf{r}_{u}\left(u_{0}, v_{0}\right) \times \mathbf{r}_{v}\left(u_{0}, v_{0}\right)
$$

Example 5. Find the tangent plane to the parametric surface $\mathbf{r}(u, v)=\left\langle u^{2}, v^{2}, u v\right\rangle$ when $u=1$ and $v=1$.

