MTH 255
 Midterm Review

Damien Adams

1. Convert $(1,-2,7)$ to cylindrical coordinates. Draw a three-dimensional coordinate system and plot this point. Round your values to the nearest hundredth.
2. Convert $(-3,-1,2)$ to spherical coordinates. Draw a three-dimensional coordinate system and plot this point. Round your values to the nearest hundredth.
3. How can we express the plane $y=m x$ in spherical coordinates, where $m \in \mathbb{R}$?
4. Sketch the solid described by $\rho \leq 1,0 \leq \varphi \leq \frac{\pi}{6}$, and $0 \leq \theta \leq \pi$.
5. Find a parametrization for the part of the ellipsoid $x^{2}+4 y^{2}+9 z^{2}=16$ behind the $y z$-plane.
6. Find a parametrization for the part of the paraboloid $2 x^{2}+2 y^{2}+z=4$ in the first octant. If necessary, provide appropriate limitations on your parameters using inequalities that do not involve the other parameters.
7. Find the extrema of $f(x, y)=x^{2}+y^{2}+9 x-9 y$ subject to the constraint $x^{2}+y^{2} \leq 16$. Use the method of Lagrange multipliers.
8. Find the extrema of $h(x, y)=x y$ subject to the constraint $4 x^{2}+y^{2}=8$. Use the method of Lagrange multipliers.
9. Find the area of the part of the cylinder $x^{2}+z^{2}=4$ that lies above the square with vertices $(0,0),(1,0)$, $(0,1)$, and $(1,1)$.
10. Find the area of the part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.
11. Find the area of the part of the surface $z=4-2 x^{2}+y$ that lies above the triangle with vertices $(0,0)$, $(1,0)$, and $(1,1)$.
12. Evaluate $\iiint_{E} y d V$, where $E=\{(x, y, z) \mid 0 \leq x \leq 3,0 \leq y \leq x, x-y \leq z \leq x+y\}$.
13. Evaluate $\iiint_{E} \sin y d V$, where E lies below the plane $z=x$ and above the triangular region with vertices $(0,0,0),(\pi, 0,0)$, and $(0, \pi, 0)$.
14. Find the volume of the solid enclosed by the paraboloids $y=x^{2}+z^{2}$ and $y=8-x^{2}-z^{2}$.
15. Evaluate $\iiint_{E_{2}} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where E is the solid above the cone $z=\sqrt{x^{2}+y^{2}}$ and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.
16. Find the volume of the solid above the cone $\varphi=\frac{\pi}{3}$ and beneath the sphere $\rho=4 \cos \varphi$.
17. Find the Jacobian for the transformation $x=u+v w, y=v+w u$, and $z=w+u v$.
18. Consider $\iint_{R}(4 x+8 y) d A$, where R is the parallelogram with vertices $(-1,3),(1,-3),(3,-1)$, and $(1,5)$. Evaluate the integral with the transformation $x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$.
19. Evaluate $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$, where R is the rectangle enclosed by $x-y=0, x-y=2, x+y=0$, and $x+y=3$.
