MTH 251 Lab
 Limit Laws

Damien Adams

Prompts

1. Evaluate each limit. Justify each step by indicating which limit law(s) you used.
a. $\lim _{t \rightarrow 4} \sqrt{6 t+1}$
b. $\lim _{y \rightarrow 7} \frac{y+3}{y-\sqrt{y+9}}$
c. $\lim _{x \rightarrow \pi}(x \cos x)$
2. As it stands, the quotient law (of limits) cannot be used to evaluate the following limit. Explain in as much detail as possible why.

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

3. Evaluate the limit or show that it does not exist. Explain in as much detail as possible how to proceed from step to step.

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

4. Evaluate the limit or show that it does not exist. Explain in as much detail as possible how to proceed from step to step.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{3+h}-\sqrt{3}}{h}
$$

5. Evaluate the limit or show that it does not exist. Explain in as much detail as possible how to proceed from step to step.

$$
\lim _{x \rightarrow-1^{+}} \frac{|x+1|}{x^{2}+4 x+3}
$$

6. Evaluate the limit or show that it does not exist. Explain in as much detail as possible how to proceed from step to step.

$$
\lim _{x \rightarrow 1^{-}} \frac{|x-1|}{x^{2}-4 x+3}
$$

7. Evaluate the limit or show that it does not exist. Explain in as much detail as possible how to proceed from step to step. In this problem, treat x as a variable.

$$
\lim _{h \rightarrow 0} \frac{\frac{2}{x+h}-\frac{2}{x}}{h}
$$

8. Evaluate each limit. Justify each step by indicating which limit law(s) you used.
a. $\lim _{t \rightarrow \pi} t$
b. $\lim _{x \rightarrow 14} 23$
c. $\lim _{x \rightarrow 14} x$
9. Evaluate each limit. You will first have to manipulate the expression algebraically, then justify each step by indicating which limit law(s) you used.
a. $\lim _{x \rightarrow-4} \frac{x+4}{2 x^{2}+5 x-12}$
b. $\lim _{\beta \rightarrow 0} \frac{\sin (\beta+\pi)}{\sin \beta}$
c. $\lim _{x \rightarrow 1} \frac{4 \ln x+2 \ln \left(x^{3}\right)}{\ln x-\ln \sqrt{x}}$
