MTH 255
 Surface Area Homework

Damien Adams

1. Let R be the rectangle $[0,5] \times[1,4]$. Let S be the part of the plane $z=2+3 x+4 y$ that lies above R. Find the area of S.
2. Let S be the part of the plane $3 x+2 y+x=6$ that lies in the first octant. Find the area of S.
3. Let S be the part of the cylinder $y^{2}+z^{2}=9$ that lies above the rectangle with vertices $(0,0),(4,0),(0,2)$, and $(4,2)$. Find the area of S.
4. Let S be the part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. Find the area of S. Find the area of S.
5. Let S be the part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$. Find the area of S.
6. Let S be the part of the sphere $x^{2}+y^{2}+z^{2}=144$ that lies within the cylinder $x^{2}+y^{2}=12 x$ and above the $x y$-plane. Find the area of S.
7. Set up a double integral that represents the area of the part of the surface $z=e^{-x^{2}-y^{2}}$ above the disk $x^{2}+y^{2}=4$. Then transform this double integral into an iterated integral. You do not need to evaluate this iterated integral.
