MTH 255 Surface Area Homework

Damien Adams

- 1. Let R be the rectangle $[0,5] \times [1,4]$. Let S be the part of the plane z = 2 + 3x + 4y that lies above R. Find the area of S.
- 2. Let S be the part of the plane 3x + 2y + x = 6 that lies in the first octant. Find the area of S.
- 3. Let S be the part of the cylinder $y^2 + z^2 = 9$ that lies above the rectangle with vertices (0,0), (4,0), (0,2), and (4,2). Find the area of S.
- 4. Let S be the part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. Find the area of S. Find the area of S.
- 5. Let S be the part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$. Find the area of S.
- 6. Let S be the part of the sphere $x^2 + y^2 + z^2 = 144$ that lies within the cylinder $x^2 + y^2 = 12x$ and above the xy-plane. Find the area of S.
- 7. Set up a double integral that represents the area of the part of the surface $z = e^{-x^2-y^2}$ above the disk $x^2 + y^2 = 4$. Then transform this double integral into an iterated integral. You do not need to evaluate this iterated integral.