MTH 112 Final Review

Damien Adams

1. Find the angle coterminal with $\frac{29 \pi}{6}$ such that $0 \leq \theta<2 \pi$. Sketch θ in standard position.
2. Let $f(x)=\frac{\cos x \sin x \tan x}{x-x^{3}}$. Determine if the function is even, odd, or neither.
3. Find the exact value of $\sin \frac{-4 \pi}{3}, \cos \frac{-4 \pi}{3}, \tan \frac{-4 \pi}{3}, \csc \frac{-4 \pi}{3}, \sec \frac{-4 \pi}{3}, \cot \frac{-4 \pi}{3}$.
4. Evaluate $\arcsin \frac{-\sqrt{3}}{2}$.
5. Evaluate $\arctan \sqrt{3}$.
6. Find the exact values of the other five trigonometric functions at θ if $\cos \theta=\frac{-4}{7}$ and $\tan \theta<0$. Draw a right triangle and label the angle θ to help.
7. Let $f(x)=5 \sin \left(3 x+\frac{\pi}{2}\right)-2$. Determine the amplitude and period of f, then sketch $y=f(x)$.
8. A triangle has sides of lengths a, b, c and angles α, β, γ, where α is opposite a, β is opposite b, and γ is opposite c.
If $\gamma=90^{\circ}, a=3$, and $b=4$, then find the missing sides and angles. When necessary, round values to the nearest hundredth.
9. A triangle has sides of lengths a, b, c and angles α, β, γ, where α is opposite a, β is opposite b, and γ is opposite c.
If $\gamma=\frac{\pi}{2}, \alpha=\frac{2 \pi}{7}$, and $b=4$, then find the missing sides and angles. When necessary, round values to the nearest hundredth.
10. A triangle has sides of lengths a, b, c and angles α, β, γ, where α is opposite a, β is opposite b, and γ is opposite c.
If $a=6, b=9$, and $c=10$, then solve the triangle. If multiple triangles are plausible, then solve each one. Round each angle to the nearest degree.
11. A triangle has sides of lengths a, b, c and angles α, β, γ, where α is opposite a, β is opposite b, and γ is opposite c.
If $\beta=33^{\circ}, b=3$, and $c=4$, then solve the triangle. If multiple triangles are plausible, then solve each one. When necessary, round values to the nearest hundredth.
12. A triangle has sides of lengths a, b, c and angles α, β, γ, where α is opposite a, β is opposite b, and γ is opposite c.
If $a=31, b=26$, and $\beta=48^{\circ}$, then solve the triangle. If multiple triangles are plausible, then solve each one. When necessary, round values to the nearest hundredth.
13. A triangle has sides of lengths a, b, c and angles α, β, γ, where α is opposite a, β is opposite b, and γ is opposite c.
If $a=30, c=13$, and $\gamma=\frac{2 \pi}{5}$, then solve the triangle. If multiple triangles are plausible, then solve each one. When necessary, round values to the nearest hundredth.
14. Simplify $\sin (-x) \cos (-x) \tan (-x)$.
15. Simplify $3 \sin ^{3} \theta \csc \theta+\cos ^{2} \theta+2 \cos (-\theta) \cos \theta$.
16. Find all solutions to $2 \sin (x)-3 \sin (-x)=10$.
17. Find all solutions to $2 \sin ^{2} x-3 \sin ^{2}(-x)=10$.
18. Find all solutions to $2 \cos (4 \theta)=-\sqrt{3}$.
19. Find the exact value of $\cos \left(\frac{11 \pi}{12}\right)$.
20. Find the exact value of $\sin \left(\frac{7 \pi}{8}\right)$.
21. If $\sin x=\frac{2}{9}$ and $\cos x>0$, then find the exact values of $\cos (2 x), \sin (2 x)$, and $\tan (2 x)$.
22. Rewrite $3 \cos (4 x) \sin (5 x)$ as a sum or a difference.
23. Draw a Cartesian plane, label the x - and y-axes, draw tick marks, and provide a scale. On your plane, plot the polar point $\left(3, \frac{-3 \pi}{4}\right)$, and convert it to Cartesian coordinates.
24. Draw a Cartesian plane, label the x - and y-axes, draw tick marks, and provide a scale. On your plane, plot the polar point $\left(5, \frac{7 \pi}{6}\right)$, and convert it to Cartesian coordinates.
25. Convert the Cartesian equation $y=4 x^{2}$ to polar.
26. Let $z=3 i$. Convert z to polar form (that is, $r e^{i \theta}$). Plot z on a complex plane, labeling the axes appropriately.
27. Let $z=-3-3 i$. Convert z to polar form (that is, $r e^{i \theta}$). Plot z on a complex plane, labeling the axes appropriately.
28. Let $z=\sqrt{2}\left(\cos 205^{\circ}+i \sin 205^{\circ}\right)$ and $\omega=2 \sqrt{2}\left(\cos 118^{\circ}+i \sin 118^{\circ}\right)$. Find $z \omega, \frac{z}{\omega}$, and z^{3}. Express each result in polar form.
29. Consider the points $P(-1,3), Q(1,5)$, and $R(-3,7)$. Let $\mathbf{u}=\overrightarrow{P Q}$ and $\mathbf{v}=\overrightarrow{P R}$.
a. Find the component form of \mathbf{u}.
b. Find the component form of \mathbf{v}.
c. Express \mathbf{u} in terms of \mathbf{i} and \mathbf{j}.
d. Plot \mathbf{u} and \mathbf{v} on a Cartesian plane.
e. Plot $\mathbf{u}+\mathbf{v}$ on the same plane.
f. Find $\mathbf{u}+\mathbf{v}$.
g. Find $2 \mathbf{u}-3 \mathbf{v}$.
h. Find $\mathbf{u} \cdot \mathbf{v}$.
