MTH 112 Final Review

Damien Adams

- 1. Find the angle coterminal with $\frac{29\pi}{6}$ such that $0 \le \theta < 2\pi$. Sketch θ in standard position.
- 2. Let $f(x) = \frac{\cos x \sin x \tan x}{x x^3}$. Determine if the function is even, odd, or neither.
- 3. Find the exact value of $\sin \frac{-4\pi}{3}$, $\cos \frac{-4\pi}{3}$, $\tan \frac{-4\pi}{3}$, $\csc \frac{-4\pi}{3}$, $\sec \frac{-4\pi}{3}$, $\cot \frac{-4\pi}{3}$.
- 4. Evaluate $\arcsin \frac{-\sqrt{3}}{2}$.
- 5. Evaluate $\arctan \sqrt{3}$.
- 6. Find the exact values of the other five trigonometric functions at θ if $\cos \theta = \frac{-4}{7}$ and $\tan \theta < 0$. Draw a right triangle and label the angle θ to help.
- 7. Let $f(x) = 5\sin\left(3x + \frac{\pi}{2}\right) 2$. Determine the amplitude and period of f, then sketch y = f(x).
- 8. A triangle has sides of lengths a, b, c and angles α, β, γ , where α is opposite a, β is opposite b, and γ is opposite c.

If $\gamma = 90^{\circ}$, a = 3, and b = 4, then find the missing sides and angles. When necessary, round values to the nearest hundredth.

9. A triangle has sides of lengths a, b, c and angles α, β, γ , where α is opposite a, β is opposite b, and γ is opposite c.

If $\gamma = \frac{\pi}{2}$, $\alpha = \frac{2\pi}{7}$, and b = 4, then find the missing sides and angles. When necessary, round values to the nearest hundredth.

10. A triangle has sides of lengths a, b, c and angles α, β, γ , where α is opposite a, β is opposite b, and γ is opposite c.

If a = 6, b = 9, and c = 10, then solve the triangle. If multiple triangles are plausible, then solve each one. Round each angle to the nearest degree.

11. A triangle has sides of lengths a, b, c and angles α, β, γ , where α is opposite a, β is opposite b, and γ is opposite c.

If $\beta = 33^{\circ}$, b = 3, and c = 4, then solve the triangle. If multiple triangles are plausible, then solve each one. When necessary, round values to the nearest hundredth.

12. A triangle has sides of lengths a, b, c and angles α, β, γ , where α is opposite a, β is opposite b, and γ is opposite c.

If a = 31, b = 26, and $\beta = 48^{\circ}$, then solve the triangle. If multiple triangles are plausible, then solve each one. When necessary, round values to the nearest hundredth.

13. A triangle has sides of lengths a, b, c and angles α, β, γ , where α is opposite a, β is opposite b, and γ is opposite c.

If a = 30, c = 13, and $\gamma = \frac{2\pi}{5}$, then solve the triangle. If multiple triangles are plausible, then solve each one. When necessary, round values to the nearest hundredth.

- 14. Simplify $\sin(-x)\cos(-x)\tan(-x)$.
- 15. Simplify $3\sin^3\theta \csc\theta + \cos^2\theta + 2\cos(-\theta)\cos\theta$.
- 16. Find all solutions to $2\sin(x) 3\sin(-x) = 10$.
- 17. Find all solutions to $2\sin^2 x 3\sin^2(-x) = 10$.
- 18. Find all solutions to $2\cos(4\theta) = -\sqrt{3}$.
- 19. Find the exact value of $\cos\left(\frac{11\pi}{12}\right)$.
- 20. Find the exact value of $\sin\left(\frac{7\pi}{8}\right)$.
- 21. If $\sin x = \frac{2}{9}$ and $\cos x > 0$, then find the exact values of $\cos(2x)$, $\sin(2x)$, and $\tan(2x)$.
- 22. Rewrite $3\cos(4x)\sin(5x)$ as a sum or a difference.
- 23. Draw a Cartesian plane, label the x- and y-axes, draw tick marks, and provide a scale. On your plane, plot the polar point $(3, \frac{-3\pi}{4})$, and convert it to Cartesian coordinates.
- 24. Draw a Cartesian plane, label the x- and y-axes, draw tick marks, and provide a scale. On your plane, plot the polar point $(5, \frac{7\pi}{6})$, and convert it to Cartesian coordinates.
- 25. Convert the Cartesian equation $y = 4x^2$ to polar.
- 26. Let z = 3i. Convert z to polar form (that is, $re^{i\theta}$). Plot z on a complex plane, labeling the axes appropriately.
- 27. Let z = -3 3i. Convert z to polar form (that is, $re^{i\theta}$). Plot z on a complex plane, labeling the axes appropriately.
- 28. Let $z = \sqrt{2}(\cos 205^\circ + i \sin 205^\circ)$ and $\omega = 2\sqrt{2}(\cos 118^\circ + i \sin 118^\circ)$. Find $z\omega, \frac{z}{\omega}$, and z^3 . Express each result in polar form.
- 29. Consider the points P(-1,3), Q(1,5), and R(-3,7). Let $\mathbf{u} = \overrightarrow{PQ}$ and $\mathbf{v} = \overrightarrow{PR}$.
 - a. Find the component form of **u**.
 - b. Find the component form of **v**.
 - c. Express **u** in terms of **i** and **j**.
 - d. Plot \mathbf{u} and \mathbf{v} on a Cartesian plane.
 - e. Plot $\mathbf{u} + \mathbf{v}$ on the same plane.
 - f. Find $\mathbf{u} + \mathbf{v}$.
 - g. Find $2\mathbf{u} 3\mathbf{v}$.
 - h. Find $\mathbf{u} \cdot \mathbf{v}$.