FUNCTIONS \& SURFACES

MTH 253 LECTURE NOTES

Definition

A Function of Two Variables, f, is a rule that assigns to each ordered pair (x, y) in a set D a unique number denoted $f(x, y)$. The set D is called the Domain of f, and its Range is the set of values that f attains: $\{f(x, y) \mid(x, y) \in D\}$. The variables x and y are called the Independent Variables of f.

Note: We will assume that the domain and range must contain only real numbers.
Note: Just like it is common to write $y=f(x)$, it is also common to write $z=f(x, y)$. In this case, the variable z is called the Dependent Variable. Notice D is a subset of \mathbb{R}^{2}, and the range is a subset of \mathbb{R}.

Definition

If f is a function of two variables with domain D, then the Graph of f is the set of all points $(x, y, z) \in \mathbb{R}^{3}$ such that $z=f(x, y)$ and $(x, y) \in D$. The graph of a relationship of three variables is called a Surface.

Example 1. Consider the plane through the points $A(2,-1,3), B(1,-4,-2)$, and $C(0,2,-1)$.
a. Find the linear equation of the plane.
d. Graph $z=f(x, y)$ in GeoGebra.
b. Write a formula $z=f(x, y)$ for the
e. What is the domain of f ? plane.
f. What is the range of f ?
c. Find $f(-1,3)$.

Definition

A Linear Function in Two Variables is a function of the form $f(x, y)=a x+b y+c$. The graph of a linear function in two variables is a plane.

Example 2. Let $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$. Verify your results in GeoGebra.
a. Find $f(4,11)$.
b. Find and sketch the domain of f.

Example 3. Let $f(x, y)=\sqrt{x}-\sqrt{y}$. Verify your results in GeoGebra.
a. Find $f(16,25)$.
b. Find and sketch the
c. Find the range of f. domain of f.

Exercise 1. Let $g(x, y)=x \ln \left(x^{2}-y\right)$. Verify your results in GeoGebra.
a. Find $g(-1,2)$.
b. Find and sketch the
c. Find the range of g. domain of g.

Example 4. Draw a set of coordinate axes for \mathbb{R}^{3}. Sketch the graph of the following functions in \mathbb{R}^{3} by hand on your axes. Verify your results in GeoGebra.
a. $f(x, y)=4-x^{2}$
b. $g(x, y)=\sin x$

Exploration: A linear equation is one of the form

$$
a x+b y+c z+d=0 .
$$

The graph of such an equation is a plane. A quadratic equation is one of the form

$$
a x^{2}+b x y+c y^{2}+d y z+e z^{2}+f x z+g x+h y+i z+j=0 .
$$

The graph of such an equation (if a, b, c, d, e, f are not all 0) is a quadric surface.

Definition

The graph of a quadratic equation in two variables is called a Quadric Surface.

Note: A quadric surface often does not correspond to an equation that represents a function.

Six basic quadric surfaces:

Surface	Equation	Surface	Equation
	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$		$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$
	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$		$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Exercise 2. Match each quadric surface with its appropriate equation.
a. $z=\frac{y^{2}}{4}-\frac{x^{2}}{3}$
b. $\frac{x^{2}}{4}+z^{2}-\frac{y^{2}}{4}=1$
c. $\frac{z}{4}=\frac{x^{2}}{8}+\frac{y^{2}}{2}$
d. $-x^{2}+y^{2}-4 z^{2}=1$
e. $\frac{z^{2}}{4}=x^{2}+\frac{y^{2}}{4}$
f. $\frac{x^{2}}{4}+y^{2}+z^{2}=1$

		-			
-		-			

