PLANES MTH 253 LECTURE NOTES

Exploration: We will explore three different ways to describe a plane in 3-space.

A line is determined either by two points or a point and a direction. A plane is determined by either three points or a point and two directions. However, instead of two separated directions, we can instead substitute those two directions with a single *orthogonal* direction.

Definition

A vector \mathbf{n} orthogonal to a plane P is called a **Normal Vector** to P.

Definition

Let $Q(x_0, y_0, z_0)$ be a point on a plane in \mathbb{R}^3 . If P(x, y, z) is an arbitrary point on the plane, $\mathbf{r_0} = \langle x_0, y_0, z_0 \rangle$ is the position vector for Q, and $\mathbf{r} = \langle x, y, z \rangle$ is the position vector for P, then a vector in the plane \overrightarrow{QP} is given by

$$\mathbf{r} - \mathbf{r_0} = \langle x - x_0, y - y_0, z - z_0 \rangle.$$

Moreover, if $\mathbf{n} = \langle a, b, c \rangle$ is a normal vector to the plane, then

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0 \qquad \iff \mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r_0}$$

are each called a Vector Equation of the Plane.

Exploration: Since

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$$
$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Definition

The equation

 $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

is called the Scalar Equation of the Plane Through $Q(x_0, y_0, z_0)$ with Normal Vector $\langle a, b, c \rangle$.

Example 1. Find both the vector equation and the scalar equation of the plane through P(1,2,3) with normal vector $\mathbf{n} = \langle 2, -1, 5 \rangle$. Find the intercepts of the plane, then sketch the plane.

Exploration: If we expand the scalar equation, we obtain a new form of an equation for the plane.

Definition

An equation of the form

ax + by + cz + d = 0

is called a **Linear Equation** in x, y, z. If a, b, c are not all 0, then the linear equation represents a plane with normal vector $\langle a, b, c \rangle$.

Example 2. Find a linear equation for the plane through P(1, 2, 3) with normal vector $\mathbf{n} = \langle 2, -1, 5 \rangle$. Then graph the plane in GeoGebra.

Example 3. Find the point at which the line with parametric equations

 $x=1+2t \quad , \qquad y=3-t \quad , \qquad z=-4+5t$ intersects the plane 17x+11y+8z-63=0.

Exercise 1. Let Π be the plane determined by the points P(1, 2, 3), Q(2, -1, 5), and R(4, 1, -2).

- a. Find a vector equation for Π .
- b. Find a scalar equation for $\Pi.$
- c. Find a linear equation for $\Pi.$
- d. Find the intercepts of Π and sketch the plane by hand.
- e. Find the point at which the line whose vector equation is

$$\langle x, y, z \rangle = \langle 1, 3, -4 \rangle + t \langle 2, -1, 5 \rangle$$

intersects $\Pi.$

f. Graph Π in GeoGebra.

Definition

Two distinct planes in \mathbb{R}^3 are **Parallel** if the planes do not intersect. This occurs precisely when their normal vectors are parallel.

Theorem

Two planes in \mathbb{R}^3 that intersect are either coincident or intersect in a line. The angle between the planes is the same as the angle between their normal vectors.

Example 4. The two planes 3x - 14y - 19z + 14 = 0 and ax + by + cz - 4 = 0 are parallel. Find a, b, c.