PLANES

MTH 253 LECTURE NOTES

Exploration: We will explore three different ways to describe a plane in 3-space.
A line is determined either by two points or a point and a direction. A plane is determined by either three points or a point and two directions. However, instead of two separated directions, we can instead substitute those two directions with a single orthogonal direction.

Definition

A vector \mathbf{n} orthogonal to a plane P is called a Normal Vector to P.

Definition

Let $Q\left(x_{0}, y_{0}, z_{0}\right)$ be a point on a plane in \mathbb{R}^{3}. If $P(x, y, z)$ is an arbitrary point on the plane, $\mathbf{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ is the position vector for Q, and $\mathbf{r}=\langle x, y, z\rangle$ is the position vector for P, then a vector in the plane $\overrightarrow{Q P}$ is given by

$$
\mathbf{r}-\mathbf{r}_{\mathbf{0}}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle .
$$

Moreover, if $\mathbf{n}=\langle a, b, c\rangle$ is a normal vector to the plane, then

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=0 \quad \Longleftrightarrow \mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \mathbf{r}_{\mathbf{0}}
$$

are each called a Vector Equation of the Plane.

Exploration: Since

$$
\begin{aligned}
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right) & =0 \\
\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle & =0 \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right) & =0
\end{aligned}
$$

Definition

The equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

is called the Scalar Equation of the Plane Through $Q\left(x_{0}, y_{0}, z_{0}\right)$ with Normal Vector $\langle a, b, c\rangle$.

Example 1. Find both the vector equation and the scalar equation of the plane through $P(1,2,3)$ with normal vector $\mathbf{n}=\langle 2,-1,5\rangle$. Find the intercepts of the plane, then sketch the plane.

Exploration: If we expand the scalar equation, we obtain a new form of an equation for the plane.

Definition

An equation of the form

$$
a x+b y+c z+d=0
$$

is called a Linear Equation in x, y, z. If a, b, c are not all 0 , then the linear equation represents a plane with normal vector $\langle a, b, c\rangle$.

Example 2. Find a linear equation for the plane through $P(1,2,3)$ with normal vector $\mathbf{n}=\langle 2,-1,5\rangle$. Then graph the plane in GeoGebra.

Example 3. Find the point at which the line with parametric equations

$$
x=1+2 t \quad, \quad y=3-t \quad, \quad z=-4+5 t
$$

intersects the plane $17 x+11 y+8 z-63=0$.

Exercise 1. Let Π be the plane determined by the points $P(1,2,3), Q(2,-1,5)$, and $R(4,1,-2)$.
a. Find a vector equation for Π.
b. Find a scalar equation for Π.
c. Find a linear equation for Π.
d. Find the intercepts of Π and sketch the plane by hand.
e. Find the point at which the line whose vector equation is

$$
\langle x, y, z\rangle=\langle 1,3,-4\rangle+t\langle 2,-1,5\rangle
$$

intersects Π.
f. Graph Π in GeoGebra.

Definition

Two distinct planes in \mathbb{R}^{3} are Parallel if the planes do not intersect. This occurs precisely when their normal vectors are parallel.

Theorem

Two planes in \mathbb{R}^{3} that intersect are either coincident or intersect in a line. The angle between the planes is the same as the angle between their normal vectors.

Example 4. The two planes $3 x-14 y-19 z+14=0$ and $a x+b y+c z-4=0$ are parallel. Find a, b, c.

