LINES MTH 253 LECTURE NOTES

Exploration: We will explore three different ways to describe a line in 3-space.

Suppose $Q(x_0, y_0, z_0)$ is a point in \mathbb{R}^3 , $\mathbf{v} \in V_3$ is nonzero, and L is a line through P parallel to \mathbf{v} , where P(x, y, z) is an arbitrary point on L.

FIGURE 1. https://www.geogebra.org/classic/fsw99hgy

If $\mathbf{r} = \overrightarrow{OP}$ (the position vector of P), $\mathbf{r_0} = \overrightarrow{OQ}$ (position vector of Q), and $\mathbf{a} = \overrightarrow{QP}$, then the Triangle Law of Addition states

 $\mathbf{r}=\mathbf{r_0}+\mathbf{a}$

Since **a** and **v** are parallel, $\mathbf{a} = t\mathbf{v}$ for some $t \in \mathbb{R}$. It follows that

Definition

The Vector Equation of a line L in \mathbb{R}^3 given by

 $\mathbf{r} = \mathbf{r_0} + t\mathbf{v}$

where \mathbf{r}_0 is the position vector of a specific point on L, \mathbf{v} is any vector parallel to L, and t is a **Parameter** which gives \mathbf{r} , the position vector of an arbitrary point on L.

Note: When t > 0, we get points on one side of Q on the line. When t < 0, we get points on the other side.

Exploration: If we write $\mathbf{r} = \langle x, y, z \rangle$, $\mathbf{r_0} = \langle x_0, y_0, z_0 \rangle$, and $\mathbf{v} = \langle a, b, c \rangle$, then $\mathbf{r} = \mathbf{r_0} + t\mathbf{v} \iff \langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$

Definition

The equations

 $x = x_0 + ta$ $y = y_0 + tb$ $z = z_0 + tc$

are the **Parametric Equations** of the line L through the point $Q(x_0, y_0, z_0)$ parallel to $\mathbf{v} = \langle a, b, c \rangle$, where $t \in \mathbb{R}$. Each value of t produces a point on L. The numbers a, b, and c are called the **Direction Numbers** of L.

Example 1. Let ℓ be the line parallel to $\mathbf{v} = 2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$ that passes through P(1, 3, -4).

- a. Find a vector equation for ℓ .
- c. Find four points on ℓ .
- b. Find parametric equations for ℓ .
- d. Use GeoGebra to graph ℓ .

Definition

If the direction numbers for a line L are all nonzero, then the **Symmetric Equations** of L are

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

If a = 0, then the symmetric equations of L are

$$x = x_0$$
 , $\frac{y - y_0}{b} = \frac{z - z_0}{c}$.

Similar symmetric equations hold when b = 0 and/or c = 0.

Note: Symmetric equations for a line are found by eliminating the parameter from parametric equations.

Example 3. Let ℓ be the line parallel to $\mathbf{v} = 2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$ that passes through P(1, 3, -4). Find the points at which ℓ intersects each of the *xy*-, *xz*-, and *yz*-planes.

Exercise 1. Let ℓ be the line through the points P(1,2,3) and Q(2,-1,5). Find the following.

- a. A vector equation for ℓ .
- b. Parametric equations for ℓ .

- c. Symmetric equations for $\ell.$
- d. The point at which ℓ intersects each of the xy-, xz-, and yz-planes.

Lines

Definition

Two nonintersecting lines that are not parallel are called **Skew Lines**.

Example 4. Show that the lines ℓ_1 and ℓ_2 whose parametric equations are

 $\begin{array}{ll} \ell_1: & x = 1 + 2t & y = 3 - t & z = -4 + 5t \\ \ell_2: & x = 1 + s & y = 2 - 3s & z = 3 + 2s \end{array}$

are skew lines.

Exercise 2. Let L_1 be the line parallel to (1, 2, 3) passing through the point (2, -1, 5). Let L_2 be the line whose symmetric equations are

$$\frac{x-2}{2} = y+1 = \frac{z+1}{3}$$

Determine whether L_1 are and L_2 are parallel, skew, or intersecting lines.