LINES

MTH 253 LECTURE NOTES

Exploration: We will explore three different ways to describe a line in 3 -space.
Suppose $Q\left(x_{0}, y_{0}, z_{0}\right)$ is a point in $\mathbb{R}^{3}, \mathbf{v} \in V_{3}$ is nonzero, and L is a line through P parallel to \mathbf{v}, where $P(x, y, z)$ is an arbitrary point on L.

Figure 1. https://www.geogebra.org/classic/fsw99hgy
If $\mathbf{r}=\overrightarrow{O P}$ (the position vector of P), $\mathbf{r}_{\mathbf{0}}=\overrightarrow{O Q}$ (position vector of Q), and $\mathbf{a}=\overrightarrow{Q P}$, then the Triangle Law of Addition states

$$
\mathbf{r}=\mathrm{r}_{0}+\mathbf{a}
$$

Since \mathbf{a} and \mathbf{v} are parallel, $\mathbf{a}=t \mathbf{v}$ for some $t \in \mathbb{R}$. It follows that

Definition

The Vector Equation of a line L in \mathbb{R}^{3} given by

$$
\mathbf{r}=\mathbf{r}_{\mathbf{0}}+t \mathbf{v}
$$

where $\mathbf{r}_{\mathbf{0}}$ is the position vector of a specific point on L, \mathbf{v} is any vector parallel to L, and t is a Parameter which gives \mathbf{r}, the position vector of an arbitrary point on L.

Note: When $t>0$, we get points on one side of Q on the line. When $t<0$, we get points on the other side.

Exploration: If we write $\mathbf{r}=\langle x, y, z\rangle, \mathbf{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and $\mathbf{v}=\langle a, b, c\rangle$, then

$$
\mathbf{r}=\mathbf{r}_{\mathbf{0}}+t \mathbf{v} \quad \Longleftrightarrow \quad\langle x, y, z\rangle=\left\langle x_{0}+t a, y_{0}+t b, z_{0}+t c\right\rangle
$$

Definition

The equations

$$
\begin{aligned}
x & =x_{0}+t a \\
y & =y_{0}+t b \\
z & =z_{0}+t c
\end{aligned}
$$

are the Parametric Equations of the line L through the point $Q\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\mathbf{v}=\langle a, b, c\rangle$, where $t \in \mathbb{R}$. Each value of t produces a point on L. The numbers a, b, and c are called the Direction Numbers of L.

Example 1. Let ℓ be the line parallel to $\mathbf{v}=2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$ that passes through $P(1,3,-4)$.
a. Find a vector equation for ℓ.
c. Find four points on ℓ.
b. Find parametric equations for ℓ.
d. Use GeoGebra to graph ℓ.

Definition

If the direction numbers for a line L are all nonzero, then the Symmetric Equations of L are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

If $a=0$, then the symmetric equations of L are

$$
x=x_{0} \quad, \quad \frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

Similar symmetric equations hold when $b=0$ and/or $c=0$.

Note: Symmetric equations for a line are found by eliminating the parameter from parametric equations.

Example 2. Let ℓ be the line parallel to $\mathbf{v}=2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$ that passes through $P(1,3,-4)$. Find the symmetric equations for ℓ.

Example 3. Let ℓ be the line parallel to $\mathbf{v}=2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$ that passes through $P(1,3,-4)$. Find the points at which ℓ intersects each of the $x y-, x z$-, and $y z$-planes.

Exercise 1. Let ℓ be the line through the points $P(1,2,3)$ and $Q(2,-1,5)$. Find the following.
a. A vector equation for ℓ.
c. Symmetric equations for ℓ.
b. Parametric equations for ℓ.
d. The point at which ℓ intersects each of the $x y$-, $x z$-, and $y z$-planes.

Definition

Two nonintersecting lines that are not parallel are called Skew Lines.

Example 4. Show that the lines ℓ_{1} and ℓ_{2} whose parametric equations are

$$
\begin{array}{llrl}
\ell_{1}: & x=1+2 t & y=3-t & z=-4+5 t \\
\ell_{2}: & x=1+s & y=2-3 s & z=3+2 s
\end{array}
$$

are skew lines.

Exercise 2. Let L_{1} be the line parallel to $\langle 1,2,3\rangle$ passing through the point $(2,-1,5)$. Let L_{2} be the line whose symmetric equations are

$$
\frac{x-2}{2}=y+1=\frac{z+1}{3} .
$$

Determine whether L_{1} are and L_{2} are parallel, skew, or intersecting lines.

