WORK

MTH 253 LECTURE NOTES

Exploration: Suppose a constant force is being exerted on an object to move it in a straight line. Then the force being exerted on the object has an amount of force as well as a direction of the force. So force can be represented by a vector! Suppose that the force, \mathbf{F}, is not necessarily being exerted in the same direction as the object is to move.

If the object moves from an initial point A to a terminal point C, then the displacement vector can be written as $\mathbf{D}=\overrightarrow{A C}$. The two vectors here are \mathbf{D} and \mathbf{F}.

Notice that $\cos \theta=\frac{|\overrightarrow{A B}|}{|\mathbf{F}|}$, so $|\mathbf{F}| \cos \theta=|\overrightarrow{A B}|$. From physics, the work done by a vector \mathbf{F} is defined as the product of the magnitude of the displacement, $|\mathbf{D}|$, and the magnitude of the applied force in the direction of the motion, $|\overrightarrow{A B}|$. In particular,

$$
\begin{aligned}
W & =|\mathbf{D} \| \overrightarrow{A B}| \\
& =|\mathbf{D}|(|\mathbf{F}| \cos \theta) \\
& =|\mathbf{D} \| \mathbf{F}| \cos \theta \\
& =\mathbf{D} \cdot \mathbf{F}
\end{aligned}
$$

Definition

The Work done by a force \mathbf{F} on an object whose displacement vector is \mathbf{D} is

$$
W=\mathbf{F} \cdot \mathbf{D}=|\mathbf{F}||\mathbf{D}| \cos \theta
$$

where θ is the angle between \mathbf{F} and \mathbf{D}.

Units: Force is typically measured in pounds (lbs) (US) or Newtons (N) (metric).
Displacement is typically measured in feet (ft) (US) or meters (m) (metric).
Work is typically measured in foot-pounds (ft-lbs) (US) or Joules (J) (metric).

Example 1. A rolling backpack is being pulled a distance of 20 m along a horizontal path by a constant force of 50 N . The handle of the backpack is held at an angle of 55° above the horizontal. Find the work done by the force, rounded to the nearest Joule.

Exercise 1. A force given by a vector $\mathbf{F}=-2 \mathbf{i}+4 \mathbf{k}$ and moves a particle from $P(-1,-1,-1)$ to $Q(1,6,0)$. Find the work done by the force on the particle. Then find the angle between the force and displacement vectors.

