DOT PRODUCT MTH 253 LECTURE NOTES

Definition

The **Dot Product** (or **Inner Product** or **Scalar Product**) of two nonzero vectors $\mathbf{u} = \langle u_1, u_2, \ldots, u_n \rangle$ and $\mathbf{v} = \langle v_1, v_2, \ldots, v_n \rangle$ is the number

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$

Example 1. Let $\mathbf{u} = \langle -3, 4, 2 \rangle$ and $\mathbf{v} = \langle 2, -1, 5 \rangle$. Find $\mathbf{u} \cdot \mathbf{v}$.

Exercise 1. Let $\mathbf{v} = \langle 2, -1, 5 \rangle$ and $\mathbf{w} = \langle -4, 2, -10 \rangle$. Find $\mathbf{v} \cdot \mathbf{w}$.

Properties of the Dot Product If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V_3$ and $c \in \mathbb{R}$, then i. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2 \ge 0$ ii. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ iii. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ iv. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$ v. $\mathbf{0} \cdot \mathbf{u} = 0$

Exploration: Consider the vectors \mathbf{u}, \mathbf{v} , and $\mathbf{u} - \mathbf{v}$, and let θ be the angle between \mathbf{u} and \mathbf{v} . Use the Law of Cosines to find a relationship between \mathbf{u}, \mathbf{v} , and θ .

Theorem

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$, where $\theta \in [0, \pi]$ is the angle between \mathbf{u} and \mathbf{v} .

Corollary

If θ is the angle between two nonzero vectors \mathbf{u} and \mathbf{v} , then $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$.

Example 2. Let $\mathbf{u} = \langle -3, 4, 2 \rangle$ and $\mathbf{v} = \langle 2, -1, 5 \rangle$. Find the angle between \mathbf{u} and \mathbf{v} .

Example 3. Let $\mathbf{u} = \langle -3, 4, 2 \rangle$ and $\mathbf{w} = \langle -4, 2, -10 \rangle$. Find the angle between \mathbf{u} and \mathbf{w} .

Exercise 2. Let $\mathbf{v} = \langle 2, -1, 5 \rangle$ and $\mathbf{w} = \langle -4, 2, -10 \rangle$. Find the angle between \mathbf{v} and \mathbf{w} .

Definition

Two nonzero vectors \mathbf{u} and \mathbf{v} are called **Orthogonal** (or **Perpendicular**) if $\mathbf{u} \cdot \mathbf{v} = 0$. Two nonzero vectors \mathbf{u} and \mathbf{v} are called **Parallel** if $\mathbf{u} = c\mathbf{v}$ where $c \in \mathbb{R}$.

Exercise 3. Let $\mathbf{u} = \langle -3, 4, 2 \rangle$, $\mathbf{v} = \langle 2, -1, 5 \rangle$, and $\mathbf{w} = \langle -4, 2, -10 \rangle$. Determine which vectors are parallel or orthogonal.

Exploration: Consider two vectors \mathbf{u} and \mathbf{v} with the same initial point P. Given these two vectors, we may want to find the projection of one onto the other.

Definition

Let $\mathbf{u}, \mathbf{v} \in V_n$. If we drop a perpendicular from \mathbf{u} onto the line on \mathbf{v} and call the point of intersection Q, then we can define two projections.

- The Vector Projection of v onto u, $\operatorname{proj}_{u} v$, is the vector \overrightarrow{PQ} .
- The Scalar Projection of v onto u, $\operatorname{comp}_u v$, is the signed magnitude of $\operatorname{proj}_u v$, where the quantity is positive if $\operatorname{proj}_u v$ is in the same direction as u and negative if in the opposite direction.

Exploration: Let's find nice formulas for $\operatorname{comp}_{\mathbf{u}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ that involve \mathbf{u} and \mathbf{v} .

Theorem

If $\mathbf{u}, \mathbf{v} \in V_n$, then

$$\operatorname{comp}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|}$$

$$\operatorname{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|^2} \mathbf{u}$$

$$= \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

a. Find $\operatorname{comp}_{\mathbf{u}}\mathbf{v}$ and $\operatorname{proj}_{\mathbf{u}}\mathbf{v}.$

b. Find $\operatorname{comp}_{\mathbf{v}} \mathbf{u}$ and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Exercise 4. Let $\mathbf{u} = \langle 1, 2, 3 \rangle$ and $\mathbf{v} = \langle 2, -1, 5 \rangle$. Find $\operatorname{comp}_{\mathbf{u}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$.