LESSON 8

Partial Derivatives

Contents
8.1 Introduction and Definitions . 2
8.2 Computing the Partial Derivatives 3
8.3 Implicit Differentiation . 6

8.1 Introduction and Definitions

Our goal over the next two lessons is to come up with a linear approximation to a function in two variables at a given point. If we think about a function in two variables graphing as a landscape, then a linearization of the surface will be a tangent plane as opposed to a tangent line. We do not now have a single slope but different slopes depending on the direction being traveled.

Look at figure 8.1 below. We see that if you travel along the surface in the x-direction near point A you will be on the red tangent line labeled $T_{x}(a, b)$. But if you travel along the surface in the y-direction near this point you will be on the green tangent line labeled $T_{y}(a, b)$.

Figure 8.1.1: Graph of a surface with a tangent plane and tangent lines in the x and y-directions View in Geogebra: https://www.geogebra.org/3d/bvv8jqjp

In order to find the equation of the tangent lines and tangent plane we need the slopes of the tangent lines in the x and y directions at the point $A=(a, b)$. Let's begin with the following definition:

Definition 8.1.1

Given a function, f, in two variables then

$$
f_{x}(a, b)=\lim _{x \rightarrow a} \frac{f(x, b)-f(a, b)}{x-a}
$$

is the slope of f when traveling in the x-direction and

$$
f_{y}(a, b)=\lim _{y \rightarrow b} \frac{f(a, y)-f(a, b)}{y-b}
$$

is the slope of f when traveling in the y-direction.

This definition is true and comes directly from our definition of a derivative in one-variable. However, we are going to find partial derivative functions that allow us to find the slopes of f when traveling in the x and y-directions at any point in the domain of f (that has a defined slope in the given direction) respectively. We define these functions here:

Definition 8.1.2

Given a function, f, in two variables then

$$
\frac{\partial}{\partial x} f(x, y)=f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

is a new function in x and y called the partial derivative of f with respect to x and outputs the slopes of f in the x-direction for any given point in its domain. Similarly,

$$
\frac{\partial}{\partial y} f(x, y)=f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

is a new function in x and y called the partial derivative of f with respect to y and outputs the slopes of f in the y-direction for any given point in its domain.

8.2 Computing the Partial Derivatives

Again, the definitions in Definition 8.1.2 are true and again come from the definition of a derivative in one-variable but we are not going to use them in practice. To simplify things we find $f_{x}(x, y)$ by taking the derivative of f with respect to x while thinking of the y as a constant instead of a variable. Similarly to find $f_{y}(x, y)$ we will take the derivative of f with respect to y while thinking of the x as a constant instead of a variable.

Example 8.2.1 Given $f(x, y)=x^{4}+x^{2} y-2 y^{2}$, find $f_{x}(2,1)$ and $f_{y}(2,1)$. Interpret these values as slopes.

Exercise 8.2.1 Given $f(x, y)=\arctan (y / x)$, find $f_{x}(2,3)$ and $f_{y}(2,3)$ and interpret them as slopes.

Definition 8.2.1

Suppose $z=f(x, y)$, then we define the following notations:

$$
\begin{gathered}
\frac{\partial z}{\partial x}=\frac{\partial}{\partial x} f(x, y)=f_{x}(x, y) \\
\frac{\partial z}{\partial y}=\frac{\partial}{\partial y} f(x, y)=f_{y}(x, y) \\
f_{x x}(x, y)=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x^{2}} \\
f_{y y}(x, y)=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y^{2}} \\
f_{x y}(x, y)=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial y \partial x} \\
f_{y x}(x, y)=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial x \partial y}
\end{gathered}
$$

We will investigate the second partial derivatives defined above more in the coming lessons but for now we can think of $f_{x x}$ as the concavity in the x-direction and $f_{y y}$ as the concavity in the y-direction. To understand $f_{x y}$ we think of it as the rate of change of f_{x} in the y direction. That is, how do the slopes in the x-direction change as we move in the y-direction. Symmetrically $f_{y x}$ is the rate of change of f_{y} in the x-direction - the rate of change of the slopes in the y-direction as we move in the x-direction. A handy theorem that works form most function that we run into is:

Theorem 8.2.1

Clairaut's Theorem Suppose a function f in two variables is defined on a disc, D. If $f_{x y}(x, y)$ and $f_{y x}(x, y)$ are both continuous on D, then

$$
f_{x y}(x, y)=f_{y x}(x, y)
$$

One more quick note on partial derivatives before doing more examples is that, without getting into a long and formal definition, if we want to take partial derivatives of higher order we can do so. For example, we could take

$$
f_{x y y}(x, y)=\frac{\partial}{\partial y}\left(f_{x y}\right)=\frac{\partial^{3} f}{\partial y^{2} \partial x} .
$$

Example 8.2.2 Find all second order partial derivatives for $f(x, y)=\sin (2 x-3 y)$.

Exercise 8.2.2 Given $f(x, y)=3 x y^{4}+x^{3} y^{2}$, find $f_{x x y}$ and $f_{y y y}$.

8.3 Implicit Differentiation

Given an implicit equation in three variables it is possible to find partial derivatives with respect to x and y. To do this, we still think of z as a function in both x and y, when taking a partial with respect to x we still think of y as a constant and, symmetrically, if taking a partial with respect to y we still think of x as a constant.
Example 8.3.1 Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $y z=\ln (x+z)$.

Exercise 8.3.1 Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $\sin (x y z)=x+2 y+3 z$.

