
LESSON 3

Arc Length and Curvature
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MTH 254 LESSON 3. ARC LENGTH AND CURVATURE

In response to plotting space curves, we raise the question of how long a curve is over some
interval. In the case of a space curve following the path of a moving object, the question
could be posed as how far the object travels over a given interval of time. It is also of interest
to discuss the curvature of the space curve (how tightly it turns) at different points along
its path and to have a couple of different quantitative ways of measuring this.

3.1 Arc Length

To determine a formula to give us the arc length of a space curve over some interval we will
build a Riemann Sum out of the lengths of higher and higher quality straight-line approxi-
mations to the curve.

Figure 3.1.1: Arc Length
Approximation using two points.

We begin by taking a distance ap-
proximation using just the endpoints,
which gives

D = |r(t1)− r(t0)|.

Figure 3.1.2: Arc Length
Approximation using three points.

We then re-approximate the distance
using three points using

D = |r(t1)− r(t0)|+ |r(t2)− r(t1)|

=
2∑

i=1

|r(ti)− r(ti−1)|.

Figure 3.1.3: Arc Length
Approximation using eight points.

Repeating this using eight points
then yields

D =
8∑

i=1

|r(ti)− r(ti−1)|.
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Note then that if n equals the number of straight lines the curve is approximated by, we find
that:

∆t =
tn − t0
n

, ti = t0 + ∆t · i, i ∈ {1, 2, ..., n}.

Letting ∆ri = r(ti) − r(ti−1) we get the distance approximation using n straight lines and
equal t-spacing of:

D =
n∑
i=1

|∆ri| =
n∑
i=1

∣∣∣∣∆ri
∆t

∣∣∣∣∆t.
We want to take the limit as n→∞ to get an exact value for the distance along the curve
which then results in our final formula:

D = lim
n→∞

n∑
i=1

∣∣∣∣∆ri
∆t

∣∣∣∣∆t
=

tf∫
t0

|r′(t)|dt

=

tf∫
t0

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

where tf is the t-value of the right end-point of the curve.

Example 3.1.1 Find the length of the curve r(t) = 〈2 sin(t), 2 cos(t), 5t〉 over 0 ≤ t ≤ π.

Exercise 3.1.1 Find the length of the curve r(t) =
〈

1
2
t2, 1

9
(6t)3/2, 3t

〉
, over 1 ≤ t ≤ 4.
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3.1.1 Reparameterization of a Vector Function from t to arc length,
s

Note that when we define a space-curve with an input of t, we will almost always see that a
single unit of t (which we often think of as time) will not correspond to a single unit length.
However, it is often possible to redefine the curve in such a way where the input is the length
of the curve traveled from the starting point (which we often symbolize with s).

Example 3.1.2 Reparameterize the curve r(t) = 2ti+ (1− 3t)j+ (5+ 4t)k with respect to
arc length measured from the point where t = 0 in the direction of increasing t.

Figure 3.1.4: View Graph Using Geogebra
https://www.geogebra.org/3d/j9mbbwyn

Exercise 3.1.2 Reparameterize the curve r(t) = 〈sin(t), 3t, cos(t)〉 with respect to arc
length measured from the point where t = 0 in direction of increasing t.
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3.2 Curvature

If we consider a measurement for the amount of curvature on a curve, our intuition would
conclude that a straight line will have curvature 0 because the tangent vector is constant,
while small circles will have large curvature and large circles will have small curvature. If we
consider unit-tangent vectors along a curve, if there is a sharp turn, the unit-tangent vector
changes more quickly while if the turn is ‘smoother,’ the tangent vector changes more slowly.

We may now define the curvature κ (lower-case, Greek-letter kappa) of a space curve C.

Definition 3.2.1

The curvature κ (lower-case, Greek-letter kappa) of a space curve C with T as the

unit tangent vector and s(t) as the arc-length function is κ =

∣∣∣∣dTds
∣∣∣∣

There are variations to curvature formulas for κ:

κ =

∣∣∣∣dTds
∣∣∣∣

=

∣∣∣∣T′(t)
s′(t)

∣∣∣∣
=

|r′(t)× r′′(t)|
|r′(t)|3

The last version of κ is more
commonly used for calcula-
tions. The proof is left as a
reading from the text.

We can interpret the curvature κ as the magnitude of the rate of change of the unit tangent
vector with respect to the arc length.

Example 3.2.1 Find the curvature of r(t) = 〈t2, ln(t), t ln(t)〉 at the point (1, 0, 0). Note:
this will give the measure of how quickly the curve changes direction at the given point.
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Exercise 3.2.1 Find the curvature of r(t) = 〈t, t2, t3〉 at the point (1, 1, 1)

3.3 Unit Tangent and Unit Normal Vectors

It is sometimes useful to look at a given point on a curve, to be able to determine the tan-
gent vector at that point, and then be able to adjust the tangent vector so that it has length
one. If we can do this generally for any point we acquire what is called the Unit Tangent
Function, denoted T(t), which gives the direction of the curve at any point in time.
Another useful function is called the Unit Normal Function, denoted N(t), which gives
a unit vector pointing at a right-angle to the tangent vector and to the inside of the curve.
That is, it points in the direction that the curve is turning. Thus, by coming up with this
function we can quickly tell the direction the curve is turning at any point in time.

Definition 3.3.1

The Unit Tangent Function for a Vector Function r, is defined to be

T(t) =
r′(t)
|r′(t)| ,

which gives the direction of r(t) at any point along the curve.

Note that this is a somewhat intuitive calculation since r′(t) is the direction-vector of the
curve at any point and by dividing by |r′(t)| we change the magnitude of this vector to be 1.
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Definition 3.3.2

The Unit Normal Function for a Vector Function r, is defined to be

N(t) =
T′(t)
|T′(t)| ,

which gives the direction that r(t) is turning at any point along the curve.

Here this is again somewhat intuitive as T′(t) is the rate of change of the direction-vector,
hence producing a vector in the direction of the change in direction. Again, by dividing by
|T′(t)| we are simply changing the magnitude of this change-in-direction vector to be 1.

Example 3.3.1 Find the unit tangent and unit normal vectors, T(t) and N(t) respectively,
for the Vector Function r(t) = 〈t2, sin(t) − t cos(t), cos(t) + t sin(t)〉 at the point (π2, π,−1)
on the curve.

Figure 3.3.1: View Graph Using Geogebra
https://www.geogebra.org/3d/ds7gwjpt

Exercise 3.3.1 Find the Unit Tangent and Unit Normal Vector Functions T(t) and N(t)
respectively, for the Vector Function r(t) =

〈
t, 1

2
t2, t2

〉
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3.4 Equations of Normal Planes to a Curve

Recall the equation of a plane is given by

ax+ by + cz = d,

where 〈a, b, c〉 is any normal vector to the plane (a vector orthogonal to the plane) and d can
then be found by substituting any point into the equation for the plane and simplifying.

Definition 3.4.1

The Normal Plane to a curve at a given point is the plane which contains the point
in question and whose normal vector is the tangent vector to the curve at that point.

Example 3.4.1 Find the equation of the normal plane to the curve r(t) = 〈t, t2, t3〉 at the
point (1, 1, 1).

Figure 3.4.1: View Graph Using Geogebra
https://www.geogebra.org/3d/rj4rwuhd
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Exercise 3.4.1 Find the equation of the normal plane to the curve r(t) = 〈cos(t), sin(t), t〉
at the point P = (0, 1, π/2).

3.5 Length of Intersection of Two Surfaces

As a final extension to the ideas introduced in this lesson, we review how to find the curve
of intersection of two surfaces and, supposing this curve is of finite length, to then determine
that length.

Example 3.5.1 Find the length of the curve of intersection of the cylinder 4x2 + y2 = 4
and the plane x+ y + z = 2.

Figure 3.5.1: View Graph Using Geogebra
https://www.geogebra.org/3d/mnxs8qzq
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