MTH 112 Midterm Review

Damien Adams

- 1. Sketch -330° in standard position, then convert it to radians.
- 2. Sketch $\frac{-5\pi}{4}$ in standard position, then convert it to degrees.
- 3. Find the angle coterminal with 4321° such that $0 \le \theta < 360^{\circ}$. Sketch θ in standard position.
- 4. Find the angle coterminal with $\frac{25\pi}{6}$ such that $0 \le \theta < 2\pi$. Sketch θ in standard position.
- 5. Sketch a right triangle with an acute angle θ . Evaluate the other five trigonometric functions at θ if $\csc \theta = \frac{-41}{9}$.
- 6. Sketch a right triangle with an acute angle θ . Evaluate the other five trigonometric functions at θ if $\cot \theta = \frac{21}{20}$.
- 7. Find the exact value of $\csc \frac{7\pi}{4}$.
- 8. Find the exact value of sec $\frac{2\pi}{3}$.
- 9. Find the exact value of $\cot \frac{5\pi}{3}$.
- 10. Find the exact value of $\tan 3\pi$.
- 11. Find the exact value of $\csc(-120^\circ)$.
- 12. Find the exact value of $\sec(240^\circ)$.
- 13. Find the exact value of $\cot(150^\circ)$.
- 14. Find the exact value of $\tan(210^\circ)$.
- 15. Find the exact values of the other five trigonometric functions at θ if $\tan \theta = 3$ and $\cos \theta > 0$. Draw a right triangle and label the angle θ to help.
- 16. Find the exact values of the other five trigonometric functions at θ if $\sin \theta = -0.2$ and $\tan \theta > 0$. Draw a right triangle and label the angle θ to help.
- 17. Find the exact values of the other five trigonometric functions at θ if $\sec \theta = -2$ and $\cot \theta > 0$. Draw a right triangle and label the angle θ to help.
- 18. Let $f(x) = \frac{x^2 + 1}{x^{16} \tan x}$. Determine if the function is even, odd, or neither.
- 19. Let $f(x) = \frac{|x| \cos x}{\sin x} \tan x$. Determine if the function is even, odd, or neither.
- 20. Draw a Cartesian plane, label your axes, and provide a scale. On your axes, sketch at least two periods of the function $f(x) = -3\cos\left(3x + \frac{\pi}{2}\right) 1$.
- 21. Draw a Cartesian plane, label your axes, and provide a scale. On your axes, sketch at least two periods of the function $f(x) = 4\sin(\pi x 2\pi) + 1$.

- 22. Draw a Cartesian plane, label your axes, and provide a scale. On your axes, sketch at least two periods of the function $f(x) = -2 \tan \left(x \frac{\pi}{4}\right)$.
- 23. Draw a Cartesian plane, label your axes, and provide a scale. On your axes, sketch at least two periods of the function $f(x) = \frac{1}{2} \tan(2x \pi) + 1$.
- 24. Evaluate $\arcsin \frac{1}{2}$.
- 25. Evaluate $\sin^{-1} 1$.
- 26. Evaluate $\cos^{-1} \frac{-\sqrt{3}}{2}$.
- 27. Evaluate $\arctan(1)$.
- 28. Evaluate $\tan^{-1}(\sqrt{3})$.
- 29. A triangle is depicted below. In this triangle, a is opposite α , b is opposite θ , and c is opposite a right angle.

- a. Solve the triangle if a = 3 and b = 4. Give an exact value of c, and round each of θ and α to the nearest tenth of a degree.
- b. Solve the triangle if b = 10 and $\alpha = \frac{\pi}{7}$. Round a and c to the nearest hundredth, and give an exact value of θ in radians.
- c. Solve the triangle if c = 26 and $\alpha = 45^{\circ}$. Give each of θ , a, and b exactly.