APPLICATIONS OF TAYLOR POLYNOMIALS MTH 253 LECTURE NOTES

Exploration: Suppose f is equal to the sum of its Taylor series at a. Then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$. Its nth degree Taylor polynomial is $T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$ $= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$

Since f is the sum of its Taylor series, $T_n \longrightarrow f$ as $n \longrightarrow \infty$. Thus, $T_n(x) \approx f(x)$ whenever x is near a.

Definition

If f is differentiable at a, then $L(x) = T_1(x)$ is called the **Linearization** of f at a. That is, L(x) = f(a) + f'(a)(x - a).

Example 1. Find the linearization of $f(x) = e^x$ at 10.

Exercise 1. Find the linearization of $g(x) = \sin x$ at 0.

Technology Exploration: Use Desmos to graph $g(x) = \sin x$ and its linearization at 0. Then graph a general linearization of g(x) for an arbitrary value of a. What is the relationship between a linearization and g? **Example 2.** Approximate $f(x) = \sqrt{x}$ by a Taylor polynomial of degree 3 at a = 4. How accurate is this approximation when $3 \le x \le 5$. Confirm your answer in GeoGebra.

Example 3. Approximate $g(x) = \sin x$ by a Taylor polynomial of degree 5 at a = 0. For what values of x is this approximation accurate within 0.00005?

Technology Exploration: Use GeoGebra to graph $g(x) = \sin x$ and $T_5(x)$ found above. Does the interval found make sense? **Example 4.** Approximate $\int_0^1 \arctan x \, dx$ using a Maclaurin polynomial of degree 6 for $\int \arctan x \, dx$.

Exercise 2. Approximate $\int_0^1 e^{-x^2} dx$ using a third-degree Taylor polynomial for $\int e^{-x^2} dx$.