APPLICATIONS OF TAYLOR POLYNOMIALS
 MTH 253 LECTURE NOTES

Exploration: Suppose f is equal to the sum of its Taylor series at a. Then $f(x)=$ $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$. Its nth degree Taylor polynomial is

$$
\begin{aligned}
T_{n}(x) & =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Since f is the sum of its Taylor series, $T_{n} \longrightarrow f$ as $n \longrightarrow \infty$. Thus, $T_{n}(x) \approx f(x)$ whenever x is near a.

Definition

If f is differentiable at a, then $L(x)=T_{1}(x)$ is called the Linearization of f at a. That is, $L(x)=f(a)+f^{\prime}(a)(x-a)$.

Example 1. Find the linearization of $f(x)=e^{x}$ at 10.

Exercise 1. Find the linearization of $g(x)=\sin x$ at 0 .

Technology Exploration: Use Desmos to graph $g(x)=\sin x$ and its linearization at 0 . Then graph a general linearization of $g(x)$ for an arbitrary value of a. What is the relationship between a linearization and g ?

Example 2. Approximate $f(x)=\sqrt{x}$ by a Taylor polynomial of degree 3 at $a=4$. How accurate is this approximation when $3 \leq x \leq 5$. Confirm your answer in GeoGebra.

Example 3. Approximate $g(x)=\sin x$ by a Taylor polynomial of degree 5 at $a=0$. For what values of x is this approximation accurate within 0.00005 ?

Technology Exploration: Use GeoGebra to graph $g(x)=\sin x$ and $T_{5}(x)$ found above. Does the interval found make sense?

Example 4. Approximate $\int_{0}^{1} \arctan x d x$ using a Maclaurin polynomial of degree 6 for $\int \arctan x d x$.

Exercise 2. Approximate $\int_{0}^{1} e^{-x^{2}} d x$ using a third-degree Taylor polynomial for $\int e^{-x^{2}} d x$.

