TAYLOR'S INEQUALITY

MTH 253 LECTURE NOTES

Note: We can find a Taylor series for several functions, but how do we know that this Taylor series actually equals the function? We made an assumption about f being able to be represented by a power series, so now let's explore when this assumption is valid.

Definition

If we let $R_{n}(x)=f(x)-T_{n}(x)$, then we call $R_{n}(x)$ the remainder of the Taylor polynomial $T_{n}(x)$.

Example 1. Find the remainder for the third-degree Taylor polynomial for $f(x)=e^{x}$ centered at 0 .

Theorem

If $f(x)=T_{n}(x)+R_{n}(x)$ and $\lim _{n \rightarrow \infty} R_{n}(x)=0$ for $|x-a|<R$, then $f(x)=\lim _{n \rightarrow \infty} T_{n}(x)$ on the interval $|x-a|<R$.

Proof:

Theorem

Weighted Mean Value Theorem for Integrals

If f and g are continuous on $[a, b]$ and g does not change sign on $[a, b]$, then there exists a number $c \in[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

Proof:

Theorem

If $f^{(n+1)}$ is continuous on an open interval I containing a, and $x \in I$, then there exists some value $c \in(a, x)$ such that

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

and we call this the Lagrange form of the Remainder Term.

Proof:

Theorem

Taylor's Inequality
If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor polynomial satisfies

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

for $|x-a| \leq d$.

Proof:

Example 2. Prove that e^{x} is equal to the sum of its Maclaurin series.

Exercise 1. Show that $f(x)=\sin x$ is equal to the sum of its Maclaurin series.

Example 3. Show that $e=\sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots$.

