TAYLOR \& MACLAURIN SERIES
 MTH 253 LECTURE NOTES

Exploration:

If f can be represented by a power series centered at a, then

$$
\begin{aligned}
& f(x)= \\
& f^{\prime}(x)= \\
& f^{\prime \prime}(x)= \\
& f^{\prime \prime \prime}(x)= \\
& \vdots
\end{aligned}
$$

Evaluate each of the previous functions at a :

$$
\begin{gathered}
f(a)= \\
f^{\prime}(a)= \\
f^{\prime \prime}(a)= \\
f^{\prime \prime \prime}(a)= \\
\vdots \\
f^{(n)}(a)=
\end{gathered}
$$

And so we can conclude

$$
c_{n}=
$$

Theorem

If we can write $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ with $|x-a|<R$, then $c_{n}=\frac{f^{(n)}(a)}{n!}$. Thus,

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

Definition

The series representation of $f(x)$ given by $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is called the Taylor series for f at a.

Definition

The Taylor series for f at 0 is called the Maclaurin series for f. Thus,

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
\end{aligned}
$$

is the Maclaurin series for f.

Example 1.

Find the Maclaurin series for $f(x)=e^{x}$ and its radius of convergence.

Note : Since $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges, it must be the case that $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$.

Definition

The polynomial

$$
\begin{aligned}
T_{n}(x) & =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

is called the n th-degree Taylor polynomial for f at a.

Note : A Taylor polynomial of degree n is a partial sum of the Taylor series.
Example 2. Find the first, second, and third-degree Taylor polynomials for $f(x)=e^{x}$ at 0 .

Exercise 1. Let $f(x)=\sin x$
(a) Find a Maclaurin series for $f(x)$.
(b) Find the radius of convergence of the Maclaurin series you found in part.
(c) Find the 5th degree Taylor polynomial for $f(x)$ at 0 .

Example 3. Find the Taylor series for $f(x)=e^{x}$ at $a=10$.

Table of Known Maclaurin Series

Function	Maclaurin Series	$=1+x+x^{2}+x^{3}+\cdots$	$R=1$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^{n}$	$=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$	$R=\infty$
e^{x}	$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	$=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$	$R=\infty$
$\sin x$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$	$=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$	$R=\infty$
$\cos x$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$	$=0$,	

Example 4. Evaluate $\int e^{-x^{2}} d x$ as an infinite series.

Example 5. Find the Maclaurin series for $f(x)=(1+x)^{p}$, where $p \in \mathbb{R}$. Then find its interval of convergence.

Definition

A binomial coefficient is defined as

$$
\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-(n-1))}{n!}
$$

and is read as " p choose n " due to its applications in probability.

Definition

If $p \in \mathbb{R}$ and $|x|<1$, then the Binomial Series for $(1+x)^{p}$ is

$$
(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots
$$

Exercise 2. Find the Maclaurin series for $f(x)=\sqrt{1+x}$ and find its interval of convergence.

Example 6. Find the Maclaurin series for $f(x)=\sqrt[3]{2+x}$ and find its interval of convergence.

