TAYLOR & MACLAURIN SERIES MTH 253 LECTURE NOTES

Exploration:

If f can be represented by a power series centered at a, then

$$f(x) =$$

$$f'(x) =$$

$$f''(x) =$$

$$f'''(x) =$$

$$\vdots$$

Evaluate each of the previous functions at a:

$$f(a) =$$

$$f'(a) =$$

$$f''(a) =$$

$$f'''(a) =$$

$$\vdots$$

$$f^{(n)}(a) =$$

And so we can conclude

 $c_n =$

Theorem If we can write $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ with |x-a| < R, then $c_n = \frac{f^{(n)}(a)}{n!}$. Thus, $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ $= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

Definition

The series representation of f(x) given by $\sum_{n=0}^{\infty} c_n (x-a)^n$ is called the **Taylor series** for f at a.

Definition

The Taylor series for f at 0 is called the **Maclaurin series for** f. Thus,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

= $f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$

is the Maclaurin series for f.

Example 1.

Find the Maclaurin series for $f(x) = e^x$ and its radius of convergence.

Note : Since
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 converges, it must be the case that $\lim_{n \to \infty} \frac{x^n}{n!} = 0$.
Definition
The polynomial
 $T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$
 $= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$
is called the *n*th-degree Taylor polynomial for f at a .

Note : A Taylor polynomial of degree n is a partial sum of the Taylor series.

Example 2. Find the first, second, and third-degree Taylor polynomials for $f(x) = e^x$ at 0.

Exercise 1. Let $f(x) = \sin x$

- (a) Find a Maclaurin series for f(x).
- (b) Find the radius of convergence of the Maclaurin series you found in part.
- (c) Find the 5th degree Taylor polynomial for f(x) at 0.

Example 3. Find the Taylor series for $f(x) = e^x$ at a = 10.

Table of Known Maclaurin Series

Function	Maclaurin Series		Radius of
1	∞		Convergence
$\frac{1}{1-x}$	$\sum_{n=0} x^n$	$= 1 + x + x^2 + x^3 + \cdots$	R = 1
e^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$R = \infty$
$\sin x$	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$	$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$R = \infty$
$\cos x$	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$	$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$R = \infty$

Example 4. Evaluate $\int e^{-x^2} dx$ as an infinite series.

Example 5. Find the Maclaurin series for $f(x) = (1 + x)^p$, where $p \in \mathbb{R}$. Then find its interval of convergence.

Definition

A **binomial coefficient** is defined as

$$\binom{p}{n} = \frac{p(p-1)(p-2)\cdots(p-(n-1))}{n!}$$

and is read as "p choose n" due to its applications in probability.

PCC Math

Definition If $p \in \mathbb{R}$ and |x| < 1, then the Binomial Series for $(1+x)^p$ is $(1+x)^p = \sum_{n=0}^{\infty} {p \choose n} x^n = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \cdots$

Exercise 2. Find the Maclaurin series for $f(x) = \sqrt{1+x}$ and find its interval of convergence.

Example 6. Find the Maclaurin series for $f(x) = \sqrt[3]{2+x}$ and find its interval of convergence.