
TAYLOR & MACLAURIN SERIES
MTH 253 LECTURE NOTES

Exploration:

If f can be represented by a power series centered at a, then

f(x) =

f ′(x) =

f ′′(x) =

f ′′′(x) =

...

Evaluate each of the previous functions at a:

f(a) =

f ′(a) =

f ′′(a) =

f ′′′(a) =

...

f (n)(a) =

And so we can conclude

cn =

1
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Theorem

If we can write f(x) =
∞∑
n=0

cn(x− a)n with |x− a| < R, then cn =
f (n)(a)

n!
. Thus,

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

Definition

The series representation of f(x) given by
∞∑
n=0

cn(x − a)n is called the Taylor series

for f at a.

Definition

The Taylor series for f at 0 is called the Maclaurin series for f . Thus,

f(x) =
∞∑
n=0

f (n)(0)

n!
xn

= f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·

is the Maclaurin series for f .

Example 1.
Find the Maclaurin series for f(x) = ex and its radius of convergence.
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Note : Since
∞∑
n=0

xn

n!
converges, it must be the case that lim

n→∞

xn

n!
= 0.

Definition

The polynomial

Tn(x) =
n∑

i=0

f (i)(a)

i!
(x− a)i

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n

is called the nth-degree Taylor polynomial for f at a.

Note : A Taylor polynomial of degree n is a partial sum of the Taylor series.

Example 2. Find the first, second, and third-degree Taylor polynomials for f(x) = ex at 0.

Exercise 1. Let f(x) = sinx

(a) Find a Maclaurin series for f(x).

(b) Find the radius of convergence of the Maclaurin series you found in part.

(c) Find the 5th degree Taylor polynomial for f(x) at 0.
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Example 3. Find the Taylor series for f(x) = ex at a = 10.

Table of Known Maclaurin Series

Function Maclaurin Series Radius of
Convergence

1

1− x

∞∑
n=0

xn = 1 + x + x2 + x3 + · · · R = 1

ex
∞∑
n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · · R =∞

sinx
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · R =∞

cosx
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · R =∞

Example 4. Evaluate

∫
e−x

2

dx as an infinite series.
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Example 5. Find the Maclaurin series for f(x) = (1 + x)p, where p ∈ R. Then find its
interval of convergence.

Definition

A binomial coefficient is defined as(
p

n

)
=

p(p− 1)(p− 2) · · · (p− (n− 1))

n!

and is read as ”p choose n” due to its applications in probability.
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Definition

If p ∈ R and |x| < 1, then the Binomial Series for (1 + x)p is

(1 + x)p =
∞∑
n=0

(
p

n

)
xn = 1 + px +

p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·

Exercise 2. Find the Maclaurin series for f(x) =
√

1 + x and find its interval of convergence.

Example 6. Find the Maclaurin series for f(x) = 3
√

2 + x and find its interval of conver-
gence.
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