POWER SERIES REPRESENTATION

MTH 253 LECTURE NOTES

Exploration: Previously, we saw that

$$
g(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots
$$

has a domain of $(-1,1)$, due to its properties of being a geometric series. Now, if $x \in(-1,1)$, what does $g(x)$ converge to (from its properties of being a geometric series)?

We say that the function above is "expressed as the sum of a power series" or "is represented by a power series". Many functions may be expressed as the sum of a power series, and when we express a function in such a way, we must include its interval of convergence.
Example 1. Express $\frac{1}{1+x^{2}}$ as the sum of a power series, and find its interval of convergence.

Technology Exploration: In Desmos, graph $\frac{1}{1+x^{2}}$ along with increasing degrees of partial sums of its power series representation. Does this appear to confirm the interval of convergence?

Example 2. Find a power series representation for $\frac{1}{2-x}$, and find its interval of convergence.

Exercise 1. Find a power series representation for $\frac{x}{1-x^{3}}$, and find its interval of convergence.

Theorem

Term-by-Term Differentiation \& Integration

If the power series $\sum c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on ($a-R, a+R$); moreover,

$$
\begin{array}{crl}
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots & =\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots & =C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
\end{array}
$$

The radii of convergence for each of the derivative and antiderivative of f are both R.

Note: This theorem can be rewritten as such:

$$
\begin{aligned}
\frac{d}{d x}\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) & =\sum_{n=0}^{\infty} \frac{d}{d x}\left(c_{n}(x-a)^{n}\right) \\
\int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x & =\sum_{n=0}^{\infty} \int\left(c_{n}(x-a)^{n}\right) d x
\end{aligned}
$$

That is, this theorem states that the sum and difference rules for differentiation and integration over a finite sum also hold for power series (which are infinite sums); however, we cannot assume that they hold for all infinite sums.

Also, note that this theorem states that the derivative and antiderivative of a power series have the same radius of convergence; however, they do not necessarily have the same interval of convergence - the endpoints must be checked!

Example 3. Let $C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. Use term-by-term differentiation and integration to find power series representations for $C^{\prime}(x)$ and $\int C(x) d x$. What are the intervals of convergence for each of these?

Technology Exploration: We recently discovered graphically that $C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=$ $\cos (x)$. Using Desmos, do the graphs of $C^{\prime}(x)$ and $\int C(x) d x$ follow?
Example 4. Find a power series representation for $\arctan x$ by integrating $\frac{1}{1+x^{2}}$. What is its interval of convergence?

Exercise 2. Find a power series representation for $\ln (1+x)$, and find its interval of convergence.

Example 5. Evaluate the indefinite integral $\int \frac{1}{1+x^{4}} d x$ as a power series, and find its interval of convergence. Then use this to approximate the definite integral $\int_{0}^{0.5} \frac{1}{1+x^{4}} d x$ accurate to six decimal places.

