POWER SERIES

MTH 253 LECTURE NOTES

Definition

A Power Series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

where x is a variable and c_{n} are the coefficients of the series. The sum of a power series is a function whose domain is

$$
\left\{x \in \mathbb{R} \mid f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \text { converges }\right\}
$$

Example 1. What is the domain of the power series given below?

$$
g(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

Definition

The series

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

is called a Power Series Centered at a (or a Power Series About a).

Note: We adopt the convention that $(x-a)^{0}=1$, even when $x=a$.
Example 2. What is the domain of the function $z(x)=\sum_{n=0}^{\infty} n!x^{n}$?

Example 3. What is the domain of $C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$?

Example 4. What is the domain of $f(x)=\sum_{n=1}^{\infty} \frac{(2 x+1)^{n}}{n}$? What is the center of this power series?

Exercise 1. What is the domain of $h(x)=\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}$?

Technology Exploration: Graph the first ten partial sums of $C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ in Desmos. What familiar function does $C(x)$ look like? Does the domain found in the previous example seem accurate graphically?

Theorem

Given a power series centered at $a, \sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, there are only three possibilities:
i. The series converges only when $x=a$.
ii. The series converges for all $x \in \mathbb{R}$.
iii. There exists a positive number R such that

- The series converges for all $|x-a|<R$,
- The series diverges for all $|x-a|>R$, and
- The series may converge or may diverge when $|x-a|=R$.

Definition

The number R in the theorem above is called the Radius of Convergence of the power series. The Interval of Convergence is the interval for which the power series converges. In relation to the theorem above,
i. The radius of convergence is 0 ; the interval of convergence is $[a, a]$.
ii. The radius of convergence is ∞; the interval of convergence is $\mathbb{R}=(-\infty, \infty)$.
iii. The radius of convergence is R; the interval of convergence is either $(a-R, a+R) \quad$ or $\quad(a-R, a+R] \quad$ or $\quad[a-R, a+R) \quad$ or $\quad[a-R, a+R]$

Example 5. Find the radius of convergence and interval of convergence for the following series. Then graph the domain on a number line.
a. $g(x)=\sum_{n=0}^{\infty} x^{n}$
b. $z(x)=\sum_{n=0}^{\infty} n!x^{n}$
c. $C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
d. $f(x)=\sum_{n=1}^{\infty} \frac{(2 x+1)^{n}}{n}$

Exercise 2. Find the radius of convergence and the interval of convergence for the series below. Then graph its domain on a number line.
$h(x)=\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}$

