INTEGRAL TEST

MTH 253 LECTURE NOTES

Recall that the Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Another way to prove this is to think of the series $\sum_{n=1}^{\infty} \frac{1}{n}$ as a Riemann Sum and then compare to the improper integral $\int_{1}^{\infty} \frac{1}{x} d x$.

Example 1. Use a similar technique to determine whether each series converges or diverges.
a. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
b. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

Fun Fact!: Finding the exact value of the sum is difficult, but the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ turns out to converge to $\frac{\pi^{2}}{6}$. This sum was first posed in 1644 and is known as the Basel problem. It was first solved in 1734 by Leonhard Euler.

Theorem:

The Integral Test

Let $a_{n}=f(n)$. If f is a function that is 1) continuous, 2) positive, and 3) decreasing on the interval $[1, \infty)$, then

- If the integral $\int_{1}^{\infty} f(x) d x$ is convergent, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
- If the integral $\int_{1}^{\infty} f(x) d x$ is divergent, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Example 2. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges or diverges. Justify your conclusion as specifically as possible.

Exercise 1. Determine whether the series $\sum_{n=3}^{\infty} \frac{\ln n}{n}$ converges or diverges. Justify your conclusion as specifically as possible.

Definition:

The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is called a p-series.

Exploration: For what values of p does a p-series definitively converge? For what values of p does a p-series definitively diverge? Are there any values of p that convergence or divergence is inconclusive?

Theorem:

The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is

- Convergent if $p>1$, and
- Divergent if $p \leq 1$.

Note: The Integral Test and the p-series test only determine convergence or divergence of a series, it does not find the sum of a series.
Exercise 2. Determine whether each series converges or diverges. Justify your conclusion as specifically as possible.
a. $\sum_{n=1}^{\infty} \frac{3}{\sqrt[3]{n}}$
c. $\sum_{n=1}^{\infty} \frac{1}{n^{-2}}$
b. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^{7}}}$
d. $\sum_{n=1}^{\infty} \frac{2}{3^{n}}$

