SERIES

MTH 253 LECTURE NOTES

Exploration: Writing an integer in base 10 means summing scalar multiple powers of 10 together. Writing a terminating or non-terminating decimal means the same thing.

$$
\begin{aligned}
8675309 & =8 \times 10^{6}+6 \times 10^{5}+7 \times 10^{4}+5 \times 10^{3}+3 \times 10^{2}+0 \times 10^{1}+9 \times 10^{0} \\
e & =2+\frac{7}{10}+\frac{1}{10^{2}}+\frac{8}{10^{3}}+\frac{2}{10^{4}}+\frac{8}{10^{5}}+\frac{1}{10^{6}}+\cdots
\end{aligned}
$$

A sequence is a bunch of values listed in order; a series is a bunch of values added in order.

Definition:

A series is the sum of the terms of a sequence. If $\left\{a_{n}\right\}$ is a sequence, then $\sum a_{n}$ or $\sum_{n=1}^{\infty} a_{n}$ is its associated series.

Some series have finite sums (the two above are finite - we put an equals sign between the series on the right and its sum on the left), and some are definitely infinite! For example,

$$
1+2+3+4+5+6+\cdots+n+\cdots
$$

Exploration: For some series, it isn't obvious whether they have a finite sum or not. In order to determine if the series sums to a value, we utilize sequences!

Definition:

The $n \mathbf{t h}$ partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

If the sequence of partial sums, $\left\{s_{n}\right\}$, converges to a value s, then the series $\sum a_{n}$ is called convergent. In this case, we say that s is the sum of the series, and write

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots=s
$$

If the sequence of partial sums, $\left\{s_{n}\right\}$, diverges, then the series $\sum a_{n}$ is called divergent.

Note: Given a series $\sum_{n=1}^{\infty} a_{n}$, notice the difference between the nth partial sum of the series and the sum of the series.

$$
\begin{aligned}
n \text {th Partial Sum: } & s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n} \\
\text { Sum: } & s=\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots+a_{n}+\cdots
\end{aligned}
$$

Moreover, it is important to note that the sum of a series is the limit of the sequence of partial sums. That is,

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

Example 1. Consider the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$.
a. Find the first 4 partial sums of the series.
b. Find a general formula for s_{n}.
c. Determine whether the series is convergent or divergent. If convergent, find its sum.
d. Use Desmos to graph the sequence, $\left\{a_{n}\right\}$, and the sequence of partial sums, $\left\{s_{n}\right\}$.

Exercise 1. Suppose the sum of the first n terms of $\sum a_{n}$ is

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\frac{2 n}{3 n+5}
$$

Determine if the series $\sum a_{n}$ is convergent or divergent. If it is convergent, find its sum.

Example 2. Consider the telescoping series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
a. Use a partial fraction decomposition to expand $\frac{1}{n(n+1)}$.
b. Write out the first 4 partial sums of the series, then find a general formula for s_{n}. (Note: This is why this series is called "telescoping".)
c. Determine whether the series is convergent or divergent. If convergent, find its sum.
d. Use Desmos to graph the sequence, $\left\{a_{n}\right\}$, and the sequence of partial sums, $\left\{s_{n}\right\}$.

Exploration: We are often able to reduce finding the sum of a series to finding the limit of the nth partial sum of the series. This is not always possible, but even when it is, it often takes some finesse.

Definition:

A geometric series is the sum of a geometric sequence.

Theorem:

The geometric series $\sum_{n=1}^{\infty} a r^{n-1}$

- converges to $\frac{a}{1-r}$ when $|r|<1$
- diverges when $|r| \geq 1$.

Proof:

Example 3. Determine whether the series $\sum_{n=1}^{\infty} 5\left(\frac{1}{3}\right)^{n}$ converges or diverges. If it converges, find its sum.

Exercise 2. Determine whether the series $-6+5-\frac{25}{6}+\frac{125}{36}-\cdots$ converges or diverges. If it converges, find its sum.

Definition:

The series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ is called the Harmonic Series.

Exploration: Show that the harmonic series is a divergent series.

Note: A geometric series with $r>1$ is a quick test to show a series is definitively divergent, since its terms continue to grow. Another test follows.

Theorem:

If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Theorem:

The Divergence Test

If either $\lim _{n \rightarrow \infty} a_{n}$ DNE, or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Note: The converse is not true! Just because $\lim _{n \rightarrow \infty} a_{n}=0$ does not imply that $\sum_{n=1}^{\infty} a_{n}$ converges. The Harmonic Series is a perfect example of this.

Exercise 3. Determine whether the series $\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$ converges or diverges. If the series converges, find its sum.

Theorem:

If $\sum a_{n}$ and $\sum b_{n}$ each converge, then

- $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
- $\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n}$

Example 4. Determine whether the series $\sum_{n=1}^{\infty}\left(\frac{3}{n^{2}+n}+\frac{1}{2^{n}}\right)$ converges or diverges. If the series converges, find its sum.

Exercise 4. Use a table in Desmos to list the sequence and sequence of partial sums for the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ up to $\mathrm{n}=10$. Use this to decide whether the series converges or diverges. If the series appears to converge, guess its sum.

