SEQUENCES

MTH 253 LECTURE NOTES

Definition:

A Sequence is a list of numbers written in a definite order. There are a couple ways to notate this:

$$
\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\} \quad \text { or } \quad\left\{a_{n}\right\}_{n=1}^{\infty} \quad \text { or } \quad\left\{a_{n}\right\}
$$

where a_{1} is the first term, a_{2} is the second term, a_{n} is the nth term, and so on.

Example 1. Consider the sequence of terms a_{n} below.

$$
\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots\right\}
$$

a. What is a_{27} ?
b. What is a_{n} ?
c. Find the general form for the sequence and write it in the $\left\{a_{n}\right\}_{n=k}^{\infty}$ notation.

Example 2. Find the general form of the following sequences and write it in the $\left\{a_{n}\right\}_{n=k}^{\infty}$ notation where k is the start of the sequence. Answers may vary!
a. $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots\right\}$
b. $\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}$
c. $\{-1,1,-1,1,-1,1, \ldots\}$
e. $\{1,-8,27,-64,125, \ldots\}$
d. $\{1,3,5,7,9, \ldots\}$
f. $\{0,1,1,2,3,5,8,13,21, \ldots\}$

Exercise 1. Find the general form of the following sequences and write it in the $\left\{a_{n}\right\}_{n=k}^{\infty}$ notation where k is the start of the sequence.
a. $\left\{2, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \frac{6}{25}, \ldots\right\}$
b. $\left\{-1, \frac{1}{3},-\frac{1}{9}, \frac{1}{27},-\frac{1}{81}, \ldots\right\}$

Definition:

The notation $\lim _{n \rightarrow \infty} a_{n}=L$ means that the terms of $\left\{a_{n}\right\}$ can be made as close to L as we like by taking n to be sufficiently large. If the limit exists, we say that the sequence converges. Otherwise, the sequence diverges.

Note: The most important goal for us at this point is to determine whether a sequence converges or diverges. Beyond that, if we have a convergent sequence, it is often important to know what it converges to. We will establish and recover a lot of theory in order to determine convergence or divergence.

Example 3. Determine whether each sequence in Example 2 converges or diverges. If it converges, find the limit.

Exploration: There are two primary ways to graph a sequence

- A number line
- A Cartesian plane (Horizontal n-axis, Vertical a_{n}-axis)

Example 4. Graph $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ using each of the methods below. Then, determine whether the sequence converges or diverges.
a. A number line.
b. A Cartesian plane

Exercise 2. Graph the sequence $\left\{\frac{1}{3^{n}}\right\}_{n=1}^{\infty}$ on a Cartesian plane. Then determine whether the sequence converges or diverges.

Definition:

A sequence $\left\{a_{n}\right\}$ is called a Geometric Sequence if each term of the sequence is obtained from the previous term by multiplying by a common ratio r. Often, we write

$$
a_{n}=a r^{n-1}
$$

where a is the initial term of the sequence.
Note that the exponent of $n-1$ may change a bit! The important part is that each term is obtained from the previous by multiplying by r.

Theorem:

The sequence $\left\{r^{n}\right\}$ is convergent if $r \in(-1,1]$ and divergent otherwise. Moreover

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1\end{cases}
$$

Note: This means that a geometric sequence is convergent if and only if it has a common ratio $r \in(-1,1]$.

Technology Exploration: https://www.desmos.com/calculator/msjqj5tnrm
Context: Below is a bunch of theory of limits of continuous functions that we can recover from Differential Calculus. We will be able to utilize this theory in order to determine whether a sequence converges or diverges.

Theorem:

If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is a positive integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Exploration:

From Differential Calculus, $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0$ when $r>0$, so

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{r}}=0 \quad \text { whenever } r>0
$$

Moreover, just as before, if $a_{n} \longrightarrow \infty$ as $n \longrightarrow \infty$, then we say $\lim _{n \rightarrow \infty} a_{n}=\infty$.

Theorem:

Limit Laws for Sequences: If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences, then

1. $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$
2. $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$
3. $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$
4. $\lim _{n \rightarrow \infty} a_{n} b_{n}=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$
5. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \quad$ if $\lim _{n \rightarrow \infty} b_{n} \neq 0$
6. $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p} \quad p>0, a_{n}>0$

Theorem:

Squeeze Theorem for Sequences: If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=$ $\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Theorem:

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Proof: Notice $\lim _{n \rightarrow \infty}\left(-\left|a_{n}\right|\right)=-\lim _{n \rightarrow \infty} a_{n}=0$. Since $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$, and since $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, we can conclude that $\lim _{n \rightarrow \infty} a_{n}=0$ by the Squeeze Theorem.

Theorem:

If $\lim _{n \rightarrow \infty} a_{n}=L$ and f is continuous at L, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$.

Example 5. Determine whether the following sequences converge or diverge. If the sequence converges, determine its limit. Justify your conclusion as specifically as possible.
a. $\left\{(-1)^{n}\right\}$
b. $\left\{\frac{(-1)^{n}}{n}\right\}$
c. $\left\{\sin \frac{\pi}{n}\right\}$
d. $\left\{\frac{n!}{n^{n}}\right\}$

Exercise 3. Determine whether the following sequences converge or diverge. If the sequence converges, determine its limit. Justify your conclusion as specifically as possible.
a. $\left\{\frac{n^{3}}{n^{3}+1}\right\}$
b. $\left\{\frac{\ln n}{n}\right\}$
c. $\{\arctan (2 n)\}$

Definition:

A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all n and decreasing if $a_{n}>a_{n+1}$ for all n. If it is either increasing or decreasing, it is called monotonic.

Definition:

A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that $a_{n} \leq M$ for all $n \geq 1$ and bounded below if there is a number m such that $m \leq a_{n}$ for all $n \geq 1$. If $\left\{a_{n}\right\}$ is bounded above and below, it is called a bounded sequence.

Theorem:

Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.

Example 6. Show that $\left\{\frac{n}{n^{2}+1}\right\}$ is convergent.

