Math 252
 Final Review Key

Damien Adams

1 Conceptual Questions

1. What makes an integral an improper integral?
2. What kind of shape is used for each area approximation: Left- and right-endpoint, Trapezoidal Rule, Midpoint Rule, and Simpson's Rule?
3. When finding the volume of a solid of revolution, describe when a disk method is useful. Describe when a washer method is useful. Describe when a shell method is useful.
4. What is the relationship between S_{n}, M_{n}, and T_{n} ?
5. When can we use L'Hôpital's Rule?
6. List the indeterminate forms.
7. Why can't we use the Fundamental Theorem of Calculus Part II to integrate $\int_{1}^{3} \frac{1}{x-2} d x$?

2 Computational Questions

1. A rectangle has its base on the x-axis and its upper two vertices on the semicircle $y=\sqrt{64-x^{2}}$. What is the largest area the rectangle can have. Use calculus and show all work in order to receive credit.

values.

$$
\begin{aligned}
0 & =A^{\prime}(x)=\frac{-4 x^{2}+128}{\sqrt{64-x^{2}}} \\
0 & =-4 x^{2}+128 \\
x^{2} & =32 \\
x & = \pm 4 \sqrt{2}
\end{aligned}
$$

The plus and minus values of x make the same rectangle, so let's take $x=4 \sqrt{2}$. Then $y=$ $\sqrt{64-(4 \sqrt{2})^{2}}=4 \sqrt{2}$, and $A=(8 \sqrt{2})(4 \sqrt{2})=64$. The largest area the rectangle can have is 64 square units.
2. An object moves along a line so that its velocity at time t is $v(t)=3 t^{2}-22 t+24$ meters per second. Find the displacement and total distance traveled by the object for $0 \leq t \leq 8$.

Solution: Displacement is $\int v(t) d t$, while distance is $\int|v(t)| d t$. Now, $v(t) \geq 0$ on $\left(-\infty, \frac{4}{3}\right) \cup(6, \infty)$. This information is useful for distance.

$$
\begin{aligned}
\text { Displacement } & =\int_{0}^{8}\left(3 t^{2}-22 t+24\right) d t \\
& =\left[t^{3}-11 t^{2}+24 t\right]_{0}^{8} \\
& =\left[(8)^{3}-11(8)^{2}+24(8)\right]-\left[(0)^{3}-11(0)^{2}+24(0)\right] \\
& =0 \text { meters } \\
\text { Distance } & =\int_{0}^{8}\left|3 t^{2}-22 t+24\right| d t \\
& =\int_{0}^{\frac{4}{3}}\left(3 t^{2}-22 t+24\right) d t-\int_{\frac{4}{3}}^{6}\left(3 t^{2}-22 t+24\right) d t+\int_{6}^{8}\left(3 t^{2}-22 t+24\right) d t \\
& =\left[t^{3}-11 t^{2}+24 t\right]_{0}^{\frac{4}{3}}-\left[t^{3}-11 t^{2}+24 t\right]_{\frac{4}{3}}^{6}+\left[t^{3}-11 t^{2}+24 t\right]_{6}^{8} \\
& =\frac{2744}{27} \text { meters }
\end{aligned}
$$

3. Evaluate $\int_{0}^{7}\left(x^{4}-8 x+7\right) d x$.

Solution:

$$
\int_{0}^{7}\left(x^{4}-8 x+7\right) d x=\left[\frac{x^{5}}{5}-4 x^{2}+7 x\right]_{0}^{7}=\frac{16072}{5}
$$

4. Evaluate $\int_{0}^{1}(1-r)^{9} d r$.

Solution: Let $u=1-r$. Then $d u=-d r$, so

$$
\int_{0}^{1}(1-r)^{9} d r=-\int_{0}^{1}(1-r)^{9} d r=-\int_{1}^{0} u^{9} d u=\int_{0}^{1} u^{9} d u=\left.\frac{u^{10}}{10}\right|_{0} ^{1}=\frac{1}{10}
$$

5. Evaluate $\int \frac{9 x^{2}}{\sqrt[3]{x^{3}+2}} d x$.

Solution: Let $u=x^{3}+2$. Then $d u=3 x^{2} d x$, so

$$
\begin{aligned}
\int \frac{9 x^{2}}{\sqrt[3]{x^{3}+2}} d x & =3 \int u^{-\frac{1}{3}} d u \\
& =\frac{9}{2} u^{\frac{2}{3}}+C=\frac{9}{2}\left(x^{3}+2\right)^{\frac{2}{3}}+C
\end{aligned}
$$

6. Evaluate $\int \sin ^{3} x \cos x d x$.

Solution: Let $u=\sin x$. Then $d u=\cos x d x$, so

$$
\int \sin ^{3} x \cos x d x=\int u^{3} d u=\frac{1}{4} u^{4}+C=\frac{1}{4} \sin ^{4} x+C
$$

7. Evaluate $\int_{-1}^{1} \cos x \tan x d x$.

Solution: Since $\cos x$ is even and $\tan x$ is odd, $\cos x \tan x$ is odd, so $\int_{-1}^{1} \cos x \tan x d x=0$.
8. Evaluate $\int \frac{6 x}{\sqrt{3 x^{2}-1}} d x$.

Solution: Let $u=3 x^{2}-1$. Then $d u=6 x d x$, so

$$
\int \frac{6 x d x}{\sqrt{3 x^{2}-1}}=\int u^{-\frac{1}{2}} d u=2 \sqrt{u}+C=2 \sqrt{3 x^{2}-1}+C
$$

9. Evaluate $\int \frac{\ln (\ln x)}{x} d x$.

Solution: Let $u=\ln x$. Then $d u=\frac{1}{x} d x$. Then

$$
\int \frac{\ln (\ln x)}{x} d x=\int \ln u d u=u \ln u-u+C=(\ln x) \ln (\ln x)-\ln x+C
$$

10. Evaluate $\int x^{2} e^{-x} d x$.

Solution: Integration by parts. Let

$$
\begin{array}{ll}
u=x^{2} & d v=e^{-x} d x \\
d u=2 x d x & v=-e^{-x} \\
& \int x^{2} e^{-x} d x=-x^{2} e^{-x}+\int 2 x e^{-x} d x=-x^{2} e^{x}+2 \int x e^{-x} d x
\end{array}
$$

By parts again, we get

$$
\begin{array}{lr}
u=x & d v=e^{-x} d x \\
d u=d x & v=-e^{-x}
\end{array}
$$

$$
\int x e^{-x} d x=-x e^{-x}+\int e^{-x} d x=-x e^{-x}-e^{-x}
$$

It follows that

$$
\int x^{2} e^{-x} d x=-x^{2} e^{-x}+2 \int x e^{-x} d x=-x^{2} e^{-x}-2\left(x e^{-x}+e^{-x}\right)+C=-e^{-x}\left(x^{2}+2 x+2\right)+C
$$

11. Evaluate $\int \frac{4 x+1}{x\left(x^{2}-4\right)} d x$.

Note: This question contains a denominator that is more complicated than one you will be assessed on. However, it is a doable problem, so I leave it on here to try.

Solution: No cancelation or substitution is useful, so we proceed by partial fractions.

$$
\frac{4 x+1}{x(x-2)(x+2)}=\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x+2}
$$

By the Heaviside Coverup (or multiply by the LCD and equate coefficients),

$$
\frac{4 x+1}{x(x-2)(x+2)}=\frac{-\frac{1}{4}}{x}+\frac{\frac{9}{8}}{x-2}-\frac{\frac{7}{8}}{x+2}
$$

So then we can integrate

$$
\begin{aligned}
\int \frac{4 x+1}{x(x-2)(x+2)} d x & =\int\left[\frac{-\frac{1}{4}}{x}+\frac{\frac{9}{8}}{x-2}-\frac{\frac{7}{8}}{x+2}\right] d x \\
& =-\frac{1}{4} \ln |x|+\frac{9}{8} \ln |x-2|-\frac{7}{8} \ln |x+2|+C
\end{aligned}
$$

12. Evaluate $\int \cos ^{3} x d x$.

Solution:

$$
\begin{aligned}
\int \cos ^{3} x d x & =\int \cos ^{2} x \cos x d x \\
& =\int\left(1-\sin ^{2} x\right) \cos x d x \\
& =\int \cos x d x-\int \sin ^{2} x \cos x d x \\
& =\sin x-\frac{1}{3} \sin ^{3} x+C
\end{aligned}
$$

13. Evaluate $\int_{4}^{6} \frac{2}{5-x} d x$. If the integral diverges, show the work that leads to your conclusion.

Solution: Since $\frac{2}{5-x}$ has an infinite discontinuity at $x=5$, this integral must be split into two improper integrals as such.

$$
\begin{aligned}
\int_{4}^{6} \frac{2}{5-x} d x & =\lim _{t \rightarrow 5^{-}} \int_{4}^{t} \frac{2}{5-x} d x+\lim _{t \rightarrow 5^{+}} \int_{t}^{6} \frac{2}{5-x} d x \\
& =\lim _{t \rightarrow 5^{-}}-\left.2 \ln |5-x|\right|_{4} ^{t}+\lim _{t \rightarrow 5^{+}}-\left.2 \ln |5-x|\right|_{t} ^{6} \\
& =-2\left(\lim _{t \rightarrow 5^{-}}(\ln |5-t|-\ln 1)+\lim _{t \rightarrow 5^{+}}(\ln 1-\ln |5-t|)\right)
\end{aligned}
$$

Since $\lim _{t \rightarrow 5^{-}} \ln |5-t|=-\infty$, our original limit does not exist. Therefore, the integral diverges.
14. Find the area of the region bounded by the curves $y=\frac{1}{1+x^{2}}, y=1+\ln (x+1), x=0$, and $x=1$.

Solution: Note $1+\ln (x+1) \geq \frac{1}{1+x^{2}}$ for all $0 \leq x \leq 1$. So the area between the curves is given by

$$
\begin{aligned}
\int_{0}^{1}\left[(1+\ln (x+1))-\frac{1}{1+x^{2}}\right] d x & =[x+(x+1) \ln (x+1)-(x+1)-\arctan x]_{0}^{1} \\
& =(1+2 \ln 2-2-\arctan 1)-(0+1 \ln 1-1-\arctan 0) \\
& =-1+2 \ln 2-\frac{\pi}{4}+1=2 \ln 2-\frac{\pi}{4}
\end{aligned}
$$

15. Find the volume of the solid obtained by rotating the region bounded by $y=2 x$ and $y=x^{2}$ about the y-axis.

Solution: The solid will have horizontal cross sections being a washer, so $V=\int_{a}^{b} \pi\left(R_{2}^{2}-R_{1}^{2}\right) d y$. Since we are integrating with respect to y, we need the curves to be $x=f(y)$, so

$$
y=2 x \Longrightarrow x=\frac{1}{2} y \quad y=x^{2} \Longrightarrow x=\sqrt{y}
$$

Moreover, we need the limits of integration, so

$$
\frac{1}{2} y=\sqrt{y} \Longrightarrow y=0,4
$$

Thus,

$$
\begin{aligned}
V & =\int_{0}^{4} \pi\left[(\sqrt{y})^{2}-\left(\frac{1}{2} y\right)^{2}\right] d y \\
& =\pi \int_{0}^{4}\left(y-\frac{1}{4} y^{2}\right) d y \\
& =\pi\left[\frac{1}{2} y^{2}-\frac{1}{12} y^{3}\right]_{0}^{4} \\
& =\pi\left(8-\frac{16}{3}\right)=\frac{8}{3} \pi
\end{aligned}
$$

16. Find the volume of the solid obtained by rotating the region bounded by $y=x e^{-x}, 0 \leq x \leq 2$, about the y-axis.

Solution: The solid will have horizontal cross sections with both radii coming from the same curve, so we need to use the shell method, so $V=\int_{a}^{b} 2 \pi r h d x$. The radius of each shell is $r=x$, and the height is $h=x e^{-x}$. Thus,

$$
\begin{array}{rlr}
V & =\int_{0}^{2} 2 \pi x\left(x e^{-x}\right) d x & \\
& =2 \pi \int_{0}^{2} x^{2} e^{-x} d x & \text { Integration by Parts } \\
& =\left.2 \pi e^{-x}\left(-x^{2}-2 x-2\right)\right|_{0} ^{2} \\
& =2 \pi\left(2-10 e^{-2}\right) & \\
& =4 \pi\left(1-5 e^{-2}\right) &
\end{array}
$$

17. Find an integral that represents the length of the curve $y=\ln |\sec x|, 0 \leq x \leq \frac{\pi}{4}$.

Solution:

$$
\begin{aligned}
L & =\int d s=\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
y & =\ln |\sec x| \\
\frac{d y}{d x} & =\frac{1}{\sec x} \sec x \tan x=\tan x \\
\left(\frac{d y}{d x}\right)^{2} & =\tan ^{2} x \\
1+\left(\frac{d y}{d x}\right)^{2} & =1+\tan ^{2} x=\sec ^{2} x \\
L & =\int_{0}^{\frac{\pi}{4}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{0}^{\frac{\pi}{4}} \sqrt{\sec ^{2} x} d x \\
& =\int_{0}^{\frac{\pi}{4}}|\sec x| d x \\
& =\int_{0}^{\frac{\pi}{4}} \sec x d x \quad \text { since } \sec x \geq 0 \text { for } 0 \leq x \leq \frac{\pi}{4}
\end{aligned}
$$

18. Damien used to be a runner (not a very good one, mind you). His friend took speed readings in m / s for the second and recorded the results as follows

t	0	1	2	3	4	5	6	7	8	9	10
$v(t)$	0	8.2	12.6	14.0	16.1	18.5	18.9	20.2	20.1	16.1	3.2

Use Simpson's Rule to estimate how far Damien sprinted before his legs gave out.

Solution: We begin by removing judgment from the context of the problem and strictly looking at the data and interpreting its meaning. ©

$$
\begin{aligned}
S= & \frac{\Delta x}{3}(v(0)+4 v(1)+2 v(2)+4 v(3)+2 v(4)+4 v(5)+2 v(6)+4 v(7)+2 v(8) \\
& \quad+4 v(9)+v(10)) \\
= & \frac{1}{3}(0+4(8.2)+2(12.6)+4(14.0)+2(16.1)+4(18.5)+2(18.9)+4(20.2)+2(20.1) \\
& \quad+4(16.1)+3.2) \\
= & \frac{1}{3}(446.6) \approx 148.87
\end{aligned}
$$

Thus, Damien ran about 148.87 meters before hitting the ground.

