Math 252
 Final Review Key

Damien Adams

1 Conceptual Questions

1. What makes an integral an improper integral?
2. What kind of shape is used for each area approximation: Left- and right-endpoint, Trapezoidal Rule, Midpoint Rule, and Simpson's Rule?
3. When finding the volume of a solid of revolution, describe when a disk method is useful. Describe when a washer method is useful. Describe when a shell method is useful.
4. What is the relationship between S_{n}, M_{n}, and T_{n} ?
5. When can we use L'Hôpital's Rule?
6. List the indeterminate forms.
7. Why can't we use the Fundamental Theorem of Calculus Part II to integrate $\int_{1}^{3} \frac{1}{x-2} d x$?

2 Computational Questions

1. A rectangle has its base on the x-axis and its upper two vertices on the semicircle $y=\sqrt{64-x^{2}}$. What is the largest area the rectangle can have. Use calculus and show all work in order to receive credit.
2. An object moves along a line so that its velocity at time t is $v(t)=3 t^{2}-22 t+24$ meters per second. Find the displacement and total distance traveled by the object for $0 \leq t \leq 8$.
3. Evaluate $\int_{0}^{7}\left(x^{4}-8 x+7\right) d x$.
4. Evaluate $\int_{0}^{1}(1-r)^{9} d r$.
5. Evaluate $\int \frac{9 x^{2}}{\sqrt[3]{x^{3}+2}} d x$.
6. Evaluate $\int \sin ^{3} x \cos x d x$.
7. Evaluate $\int_{-1}^{1} \cos x \tan x d x$.
8. Evaluate $\int \frac{6 x}{\sqrt{3 x^{2}-1}} d x$.
9. Evaluate $\int \frac{\ln (\ln x)}{x} d x$.
10. Evaluate $\int x^{2} e^{-x} d x$.
11. Evaluate $\int \frac{4 x+1}{x\left(x^{2}-4\right)} d x$.

Note: This question contains a denominator that is more complicated than one you will be assessed on. However, it is a doable problem, so I leave it on here to try.
12. Evaluate $\int \cos ^{3} x d x$.
13. Evaluate $\int_{4}^{6} \frac{2}{5-x} d x$. If the integral diverges, show the work that leads to your conclusion.
14. Find the area of the region bounded by the curves $y=\frac{1}{1+x^{2}}, y=1+\ln (x+1), x=0$, and $x=1$.
15. Find the volume of the solid obtained by rotating the region bounded by $y=2 x$ and $y=x^{2}$ about the y-axis.
16. Find the volume of the solid obtained by rotating the region bounded by $y=x e^{-x}, 0 \leq x \leq 2$, about the y-axis.
17. Find an integral that represents the length of the curve $y=\ln |\sec x|, 0 \leq x \leq \frac{\pi}{4}$.
18. Damien used to be a runner (not a very good one, mind you). His friend took speed readings in m / s for the second and recorded the results as follows

t	0	1	2	3	4	5	6	7	8	9	10
$v(t)$	0	8.2	12.6	14.0	16.1	18.5	18.9	20.2	20.1	16.1	3.2

Use Simpson's Rule to estimate how far Damien sprinted before his legs gave out.

