MTH 252 Lab
 Improper Integrals

Damien Adams

Purpose

Many functions whose domain includes (a, ∞) contain a finite area underneath its curve. Moreover, some functions whose graph contains a vertical asymptote also contain a finite area under its curve. In order to find these areas, we adapt a definite integral to work for us by utilizing a limit. Doing so will allow us to use the Fundamental Theorem of Calculus Part II.
(a) How can we rewrite $\int_{a}^{\infty} f(x) d x$ using a limit?
(b) If $f(x)$ has a vertical asymptote at $x=2$, how can we rewrite $\int_{0}^{2} f(x) d x$ using a limit? (Don't forget to include a left- or right-handed limit if necessary)
(c) If $f(x)$ has a vertical asymptote at $x=2$, how can we rewrite $\int_{0}^{3} f(x) d x$ using a limit?

Prompts

1. Determine if $\int_{1}^{\infty} e^{-x} d x$ converges or diverges. If it converges, find what it converges to. Show all work, and use proper notation as you work through.
2. Determine if $\int_{1}^{\infty} \frac{2}{x^{5}} d x$ converges or diverges. If it converges, find what it converges to. Show all work, and use proper notation as you work through.
3. Determine if $\int_{1}^{\infty} \frac{2}{\sqrt[5]{x}} d x$ converges or diverges. If it converges, find what it converges to. Show all work, and use proper notation as you work through.
4. Determine if $\int_{0}^{1} \frac{2}{x^{5}} d x$ converges or diverges. If it converges, find what it converges to. Show all work, and use proper notation as you work through.
5. Determine if $\int_{0}^{1} \frac{2}{\sqrt[5]{x}} d x$ converges or diverges. If it converges, find what it converges to. Show all work, and use proper notation as you work through.
