MTH 252 Lab
 Numerical Approximations

Damien Adams

Purpose

We have finished learning integration strategies, but we still don't know how to integrate functions like $e^{-x^{2}}$, $\ln (\ln x)$, or $\arctan \left(x^{2}\right)$. Though we will not try to find antiderivatives of these, we can still approximate definite integrals.
(a) We have $L_{n}, R_{n}, M_{n}, T_{n}$, and S_{n}. Which one is generally the most accurate? Which two are the least accurate?
(b) Which is generally more accurate: T_{n} or M_{n} ?
(c) L_{n}, R_{n}, M_{n} each use rectangles to approximate an integral. T_{n} uses trapezoids. What shape does S_{n} use to approximate a definite integral?

Prompts

1. The integral $\int_{2}^{3} \frac{2}{x \ln x} d x$ can be found exactly. It turns out, $\star=\int_{2}^{3} \frac{2}{x \ln x} d x$ has an exact value of $2 \ln \left(\frac{\ln 3}{\ln 2}\right)$.
a. Approximate \star by rounding $2 \ln \left(\frac{\ln 3}{\ln 2}\right)$ to the nearest ten-thousandth.
b. Approximate \star by computing L_{4}. Round your conclusion to the nearest ten-thousandth.
c. Approximate \star by computing R_{4}. Round your conclusion to the nearest ten-thousandth.
d. Approximate \star by computing M_{4}. Round your conclusion to the nearest ten-thousandth.
e. Approximate \star by computing T_{4}. Round your conclusion to the nearest ten-thousandth.
f. Approximate \star by computing S_{4}. Round your conclusion to the nearest ten-thousandth.
g. Compare the results of the previous computations with the conclusion you found in (a). Which strategy was most accurate? Which was least accurate?
2. An antiderivative for $f(x)=e^{-x^{2}}$ is difficult to find, but the area underneath the curve from 0 to 1 can still be represented by $\int_{0}^{1} e^{-x^{2}} d x$. Approximate this value to the nearest thousandth by using
a. M_{4}
b. T_{4}
c. S_{4}

Then find an error bound on each of the strategies used above by using a value of $K=2$.
d. E_{M}
e. E_{T}
3. The velocity of Supergirl flying through the air (in km / s) is recorded every 5 seconds from the moment she takes flight. The results are provided in the table below:

$t(\mathrm{sec})$	0	5	10	15	20	25	30	35	40	45	50
$v(t)(\mathrm{km} / \mathrm{s})$	0	80	100	128	144	160	152	136	128	120	136

Estimate the distance that Supergirl traveled (to the nearest km) by using each of the approximation strategies below.
a. T_{10}
b. S_{10}

