MTH 252 Lab Numerical Approximations

Damien Adams

Purpose

We have finished learning integration strategies, but we still don't know how to integrate functions like e^{-x^2} , $\ln(\ln x)$, or $\arctan(x^2)$. Though we will not try to find antiderivatives of these, we can still approximate definite integrals.

- (a) We have L_n, R_n, M_n, T_n , and S_n . Which one is generally the most accurate? Which two are the least accurate?
- (b) Which is generally more accurate: T_n or M_n ?
- (c) L_n, R_n, M_n each use rectangles to approximate an integral. T_n uses trapezoids. What shape does S_n use to approximate a definite integral?

Prompts

- 1. The integral $\int_{2}^{3} \frac{2}{x \ln x} dx$ can be found exactly. It turns out, $\star = \int_{2}^{3} \frac{2}{x \ln x} dx$ has an exact value of $2 \ln \left(\frac{\ln 3}{\ln 2}\right)$.
 - a. Approximate \star by rounding $2\ln\left(\frac{\ln 3}{\ln 2}\right)$ to the nearest ten-thousandth.
 - b. Approximate \star by computing L_4 . Round your conclusion to the nearest ten-thousandth.
 - c. Approximate \star by computing R_4 . Round your conclusion to the nearest ten-thousandth.
 - d. Approximate \star by computing M_4 . Round your conclusion to the nearest ten-thousandth.
 - e. Approximate \star by computing T_4 . Round your conclusion to the nearest ten-thousandth.
 - f. Approximate \star by computing S_4 . Round your conclusion to the nearest ten-thousandth.
 - g. Compare the results of the previous computations with the conclusion you found in (a). Which strategy was most accurate? Which was least accurate?

- 2. An antiderivative for $f(x) = e^{-x^2}$ is difficult to find, but the area underneath the curve from 0 to 1 can still be represented by $\int_0^1 e^{-x^2} dx$. Approximate this value to the nearest thousandth by using
 - a. M_4
 - b. T_4
 - c. S_4

Then find an error bound on each of the strategies used above by using a value of K = 2.

- d. E_M
- e. E_T
- 3. The velocity of Supergirl flying through the air (in km/s) is recorded every 5 seconds from the moment she takes flight. The results are provided in the table below:

$t \; (sec)$	0	5	10	15	20	25	30	35	40	45	50
v(t) (km/s)	0	80	100	128	144	160	152	136	128	120	136

Estimate the distance that Supergirl traveled (to the nearest km) by using each of the approximation strategies below.

- a. T_{10}
- b. S_{10}