MTH 252 Lab Volumes

Damien Adams

Purpose

Integration has now represented area under a curve, area between curves, and volume of a solid of revolution. Depending on the situation, different integrals may be useful (and some may not be useful). Draw a picture

- (a) Write down the three different integrals that represent volume. Draw a solid of revolution for each case.
- (b) If a solid of revolution has a washer cross section, describe when the shell method is necessary for finding the volume of this solid.

Prompts

- 1. Consider a solid of revolution with volume V. When should a disk method be used to find V? When should the method of cylindrical shells be used to find V? When should a washer method be used for finding V? Draw a solid to represent each of these three situations.
- 2. Let \mathcal{R} be the region in the first quadrant enclosed by the curves $y = \sin x$, $y = \cos x$, and the y-axis. For each of the following prompts, you should include a sketch of the region/solid being considered, as well as a labeled typical disk/washer/shell. You do not need to evaluate these integrals, but I would encourage you to do so outside of the lab.
 - (a) Let S_1 be the solid obtained by rotating \mathcal{R} about the *x*-axis. Write a definite integral that represents the volume of S_1 .
 - (b) Let S_2 be the solid obtained by rotating \mathcal{R} about the *y*-axis. Write a definite integral that represents the volume of S_2 .
 - (c) Let S_3 be the solid obtained by rotating \mathcal{R} about the line y = 2. Write a definite integral that represents the volume of S_3 .
 - (d) Let S_4 be the solid obtained by rotating \mathcal{R} about the line x = -1. Write a definite integral that represents the volume of S_4 .
- 3. Let $f(x) = 9 x^2$. Let S be the solid obtained by rotating the region enclosed by the x-axis and y = f(x) about the axis x = -3.
 - (a) Which method(s) may be used to compute the volume of S: Disk Method, Washer Method, and/or Shell Method?
 - (b) Set up an integral that represents the volume of \mathcal{S} .
 - (c) Find the volume of \mathfrak{S} .

- 4. Let $f(x) = x^2 + 2$ and $g(x) = 4 x^2$, and let \mathcal{R} represent the region enclosed between y = f(x) and y = g(x). Let \mathcal{S} be the "ring" obtained by rotating \mathcal{R} about the x-axis.
 - (a) Set up an integral that represents the area of \mathcal{R} .
 - (b) Find the area of \mathcal{R} .
 - (c) Set up an integral that represents the volume of \mathcal{S} .
 - (d) Find the value of \mathcal{S} .
- 5. Let T be the triangular region with vertices (0,0), (1,0), and (1,2). Let V be the volume of the solid obtained by rotating T about the line x = a with a > 1. Find V when
 - (a) a = 2
 - (b) a = 3
 - (c) a = 10