MTH 252 Lab
 Volumes

Damien Adams

Purpose

Integration has now represented area under a curve, area between curves, and volume of a solid of revolution. Depending on the situation, different integrals may be useful (and some may not be useful). Draw a picture
(a) Write down the three different integrals that represent volume. Draw a solid of revolution for each case.
(b) If a solid of revolution has a washer cross section, describe when the shell method is necessary for finding the volume of this solid.

Prompts

1. Consider a solid of revolution with volume V. When should a disk method be used to find V ? When should the method of cylindrical shells be used to find V ? When should a washer method be used for finding V ? Draw a solid to represent each of these three situations.
2. Let \mathcal{R} be the region in the first quadrant enclosed by the curves $y=\sin x, y=\cos x$, and the y-axis. For each of the following prompts, you should include a sketch of the region/solid being considered, as well as a labeled typical disk/washer/shell. You do not need to evaluate these integrals, but I would encourage you to do so outside of the lab.
(a) Let \mathcal{S}_{1} be the solid obtained by rotating \mathcal{R} about the x-axis. Write a definite integral that represents the volume of \mathcal{S}_{1}.
(b) Let \mathcal{S}_{2} be the solid obtained by rotating \mathcal{R} about the y-axis. Write a definite integral that represents the volume of \mathcal{S}_{2}.
(c) Let \mathcal{S}_{3} be the solid obtained by rotating \mathcal{R} about the line $y=2$. Write a definite integral that represents the volume of \mathcal{S}_{3}.
(d) Let \mathcal{S}_{4} be the solid obtained by rotating \mathcal{R} about the line $x=-1$. Write a definite integral that represents the volume of \mathcal{S}_{4}.
3. Let $f(x)=9-x^{2}$. Let \mathcal{S} be the solid obtained by rotating the region enclosed by the x-axis and $y=f(x)$ about the axis $x=-3$.
(a) Which method(s) may be used to compute the volume of \mathcal{S} : Disk Method, Washer Method, and/or Shell Method?
(b) Set up an integral that represents the volume of \mathcal{S}.
(c) Find the volume of \mathfrak{S}.
4. Let $f(x)=x^{2}+2$ and $g(x)=4-x^{2}$, and let \mathcal{R} represent the region enclosed between $y=f(x)$ and $y=g(x)$. Let \mathcal{S} be the "ring" obtained by rotating \mathcal{R} about the x-axis.
(a) Set up an integral that represents the area of \mathcal{R}.
(b) Find the area of \mathcal{R}.
(c) Set up an integral that represents the volume of \mathcal{S}.
(d) Find the value of \mathcal{S}.
5. Let T be the triangular region with vertices $(0,0),(1,0)$, and $(1,2)$. Let V be the volume of the solid obtained by rotating T about the line $x=a$ with $a>1$. Find V when
(a) $a=2$
(b) $a=3$
(c) $a=10$
