MTH 252 Lab Extrema

Damien Adams

Purpose

One of the most useful applications of differential calculus is optimization. This lab will focus on finding the extrema of a function, while a future lab will focus on optimizing a situation.
(a) What is the difference between a local extremum and a global extremum?
(b) The search for extrema typically begins with critical values. What is a critical value?
(c) Is an extremum guaranteed to be found at a critical value?

Prompts

1. Sketch the graph of a function described below.
(a) Sketch the graph of a function f such that f has a critical value at $x=1$ but no extremum when $x=1$.
(b) Sketch the graph of a function g such that g has a global maximum of 2 and a global minimum of -3 .
(c) Sketch the graph of a function h such that h has a local minimum of 1 but $h^{\prime}(1)$ is undefined.
2. Consider the function $f(x)=2 x^{3}-3 x^{2}-36 x+1$ with domain $[-4,0]$. Find the global extrema of f. Be sure to show all work that supports your conclusion, and use sentences to describe why you are doing what you are doing.
3. Let $f(x)=\frac{x^{2}-1}{x^{3}}$
(a) Find $f^{\prime}(x)$.
(b) What are the critical numbers of f ?
(c) Identify the intervals of concavity for f.
(d) Identify all of the local extrema of f.
4. Find all of the local extrema of $f(x)=x \sqrt{2+x}$.
