MTH 252 Lab Area Between Curves

Damien Adams

Purpose

Integration is a vastly useful tool. We will be able to use integration to compute anything that can be represented as an accumulation. We have seen now that a definite integral represents the net area between the x-axis and the curve of y = f(x) between x = a and x = b. Now we have an integral that represents the area between two curves.

- (a) What is the integral that represents the area of the region bounded above by y = f(x), below by y = g(x), to the left by x = a, and to the right by x = b?
- (b) What is the integral that represents the area of the region bounded above by y = d, below by y = c, to the left by x = g(y), and to the right by x = f(y)?

Prompts

- 1. Let $f(x) = 2^x$ and $g(x) = -x^2 + 2x + 1$.
 - a. Use Desmos to graph both f(x) and g(x).
 - b. Using the graph, identify the two points of intersection for these two curves. Determine which curve is greater than the other between the intersection points.
 - c. Set up an integral that represents the area enclosed by the curves y = f(x) and y = g(x).
 - d. Find the exact value of the area between the two curves.
- 2. Find the exact value of the area between the curves $y = \sqrt{x}$ and $y = x^3$.
- 3. On Desmos, graph both $x + y^2 = 56$ and x + y = 0. Identify the region enclosed by these two curves. Determine whether to integrate with respect to x or y, and find the area of the region.
- 4. Consider the curves given by $y = \sin x$ and $y = \cos x$. For each of the following problems, you should include a sketch of the region/solid being considered, as well as a labeled representative slice.
 - (a) Sketch the region \mathcal{R} bounded by the *y*-axis, $y = \cos x$, and $y = \sin x$ up to the first positive value of x at which the curves intersect. What is the exact intersection point of the curves? Be sure to list the *point*, not just an x- or y-value.
 - (b) Set up a definite integral with differential dx whose value is the exact area of \mathcal{R} .
 - (c) Set up a definite integral with differential dy whose value is the exact area of \mathcal{R} .

- 5. Consider the region \mathcal{R} bounded by $y = \sin(x^2)$, y = 0, x = 0, and $x = \sqrt{\pi}$. Sketch this region in Desmos, and then set up (but do not evaluate) an integral that represents the exact area of \mathcal{R} .
- 6. Consider the region S bounded by $y = \sin(x^2)$, y = 1, and x = 0. Sketch this region in Desmos, and then set up (but do not evaluate) an integral that represents the exact area of S.